Efficient algorithms for mining maximal valid groups

Efficient algorithms for mining maximal valid groups A valid group is defined as a group of moving users that are within a distance threshold from one another for at least a minimum time duration. Unlike grouping of users determined by traditional clustering algorithms, members of a valid group are expected to stay close to one another during their movement. Each valid group suggests some social grouping that can be used in targeted marketing and social network analysis. The existing valid group mining algorithms are designed to mine a complete set of valid groups from time series of user location data, known as the user movement database. Unfortunately, there are considerable redundancy in the complete set of valid groups. In this paper, we therefore address this problem of mining the set of maximal valid groups. We first extend our previous valid group mining algorithms to mine maximal valid groups, leading to AMG and VGMax algorithms. We further propose the VGBK algorithm based on maximal clique enumeration to mine the maximal valid groups. The performance results of these algorithms under different sets of mining parameters are also reported. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient algorithms for mining maximal valid groups

Loading next page...
 
/lp/springer_journal/efficient-algorithms-for-mining-maximal-valid-groups-F4pKbJ1qEy
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0019-9
Publisher site
See Article on Publisher Site

Abstract

A valid group is defined as a group of moving users that are within a distance threshold from one another for at least a minimum time duration. Unlike grouping of users determined by traditional clustering algorithms, members of a valid group are expected to stay close to one another during their movement. Each valid group suggests some social grouping that can be used in targeted marketing and social network analysis. The existing valid group mining algorithms are designed to mine a complete set of valid groups from time series of user location data, known as the user movement database. Unfortunately, there are considerable redundancy in the complete set of valid groups. In this paper, we therefore address this problem of mining the set of maximal valid groups. We first extend our previous valid group mining algorithms to mine maximal valid groups, leading to AMG and VGMax algorithms. We further propose the VGBK algorithm based on maximal clique enumeration to mine the maximal valid groups. The performance results of these algorithms under different sets of mining parameters are also reported.

Journal

The VLDB JournalSpringer Journals

Published: May 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off