Efficient algorithms for incremental Web log mining with dynamic thresholds

Efficient algorithms for incremental Web log mining with dynamic thresholds With the fast increase in Web activities, Web data mining has recently become an important research topic and is receiving a significant amount of interest from both academic and industrial environments. While existing methods are efficient for the mining of frequent path traversal patterns from the access information contained in a log file, these approaches are likely to over evaluate associations. Explicitly, most previous studies of mining path traversal patterns are based on the model of a uniform support threshold, where a single support threshold is used to determine frequent traversal patterns without taking into consideration such important factors as the length of a pattern, the positions of Web pages, and the importance of a particular pattern, etc. As a result, a low support threshold will lead to lots of uninteresting patterns derived whereas a high support threshold may cause some interesting patterns with lower supports to be ignored. In view of this, this paper broadens the horizon of frequent path traversal pattern mining by introducing a flexible model of mining Web traversal patterns with dynamic thresholds. Specifically, we study and apply the Markov chain model to provide the determination of support threshold of Web documents; and further, by properly employing some effective techniques devised for joining reference sequences, the proposed algorithm dynamic threshold miner (DTM) not only possesses the capability of mining with dynamic thresholds, but also significantly improves the execution efficiency as well as contributes to the incremental mining of Web traversal patterns. Performance of algorithm DTM and the extension of existing methods is comparatively analyzed with synthetic and real Web logs. It is shown that the option of algorithm DTM is very advantageous in reducing the number of unnecessary rules produced and leads to prominent performance improvement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient algorithms for incremental Web log mining with dynamic thresholds

Loading next page...
 
/lp/springer_journal/efficient-algorithms-for-incremental-web-log-mining-with-dynamic-1r0PzKYF24
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0043-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial