Efficient algorithms for incremental Web log mining with dynamic thresholds

Efficient algorithms for incremental Web log mining with dynamic thresholds With the fast increase in Web activities, Web data mining has recently become an important research topic and is receiving a significant amount of interest from both academic and industrial environments. While existing methods are efficient for the mining of frequent path traversal patterns from the access information contained in a log file, these approaches are likely to over evaluate associations. Explicitly, most previous studies of mining path traversal patterns are based on the model of a uniform support threshold, where a single support threshold is used to determine frequent traversal patterns without taking into consideration such important factors as the length of a pattern, the positions of Web pages, and the importance of a particular pattern, etc. As a result, a low support threshold will lead to lots of uninteresting patterns derived whereas a high support threshold may cause some interesting patterns with lower supports to be ignored. In view of this, this paper broadens the horizon of frequent path traversal pattern mining by introducing a flexible model of mining Web traversal patterns with dynamic thresholds. Specifically, we study and apply the Markov chain model to provide the determination of support threshold of Web documents; and further, by properly employing some effective techniques devised for joining reference sequences, the proposed algorithm dynamic threshold miner (DTM) not only possesses the capability of mining with dynamic thresholds, but also significantly improves the execution efficiency as well as contributes to the incremental mining of Web traversal patterns. Performance of algorithm DTM and the extension of existing methods is comparatively analyzed with synthetic and real Web logs. It is shown that the option of algorithm DTM is very advantageous in reducing the number of unnecessary rules produced and leads to prominent performance improvement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Efficient algorithms for incremental Web log mining with dynamic thresholds

Loading next page...
 
/lp/springer_journal/efficient-algorithms-for-incremental-web-log-mining-with-dynamic-1r0PzKYF24
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0043-9
Publisher site
See Article on Publisher Site

Abstract

With the fast increase in Web activities, Web data mining has recently become an important research topic and is receiving a significant amount of interest from both academic and industrial environments. While existing methods are efficient for the mining of frequent path traversal patterns from the access information contained in a log file, these approaches are likely to over evaluate associations. Explicitly, most previous studies of mining path traversal patterns are based on the model of a uniform support threshold, where a single support threshold is used to determine frequent traversal patterns without taking into consideration such important factors as the length of a pattern, the positions of Web pages, and the importance of a particular pattern, etc. As a result, a low support threshold will lead to lots of uninteresting patterns derived whereas a high support threshold may cause some interesting patterns with lower supports to be ignored. In view of this, this paper broadens the horizon of frequent path traversal pattern mining by introducing a flexible model of mining Web traversal patterns with dynamic thresholds. Specifically, we study and apply the Markov chain model to provide the determination of support threshold of Web documents; and further, by properly employing some effective techniques devised for joining reference sequences, the proposed algorithm dynamic threshold miner (DTM) not only possesses the capability of mining with dynamic thresholds, but also significantly improves the execution efficiency as well as contributes to the incremental mining of Web traversal patterns. Performance of algorithm DTM and the extension of existing methods is comparatively analyzed with synthetic and real Web logs. It is shown that the option of algorithm DTM is very advantageous in reducing the number of unnecessary rules produced and leads to prominent performance improvement.

Journal

The VLDB JournalSpringer Journals

Published: Jul 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off