Efficient aldol condensation by using modified CaO as solid-base catalysts

Efficient aldol condensation by using modified CaO as solid-base catalysts A new type of solid-base catalyst for aldol condensation reaction was prepared by modifying commercial CaO with benzyl bromide in a simple way. It was found that modified CaO can effectively catalyze the aldol condensation of acetophenone and benzaldehyde to produce chalcone with a high conversion and good selectivity. The catalyst gave a higher yield (90.5%) of chalcone than commercial CaO. The high catalytic activity and stability of this catalyst was related to the organic modifier with a hydrophilic functional group that improved the diffusion of grease to the catalyst surface and prevented its hydration. The influence of several reaction parameters, such as temperature, catalyst loading and the moisture absorption rate of modified CaO, was investigated. From the results, the basic centers of modified CaO are stable and hardly poisoned by CO2 unlike commercial CaO. The catalyst was completely recyclable without significant loss in activity up to five reaction cycles. Moreover, this catalyst showed a promising future in providing an environmentally clean process for the industrial sector. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Efficient aldol condensation by using modified CaO as solid-base catalysts

Loading next page...
 
/lp/springer_journal/efficient-aldol-condensation-by-using-modified-cao-as-solid-base-0VpPjtg7xG
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0430-8
Publisher site
See Article on Publisher Site

Abstract

A new type of solid-base catalyst for aldol condensation reaction was prepared by modifying commercial CaO with benzyl bromide in a simple way. It was found that modified CaO can effectively catalyze the aldol condensation of acetophenone and benzaldehyde to produce chalcone with a high conversion and good selectivity. The catalyst gave a higher yield (90.5%) of chalcone than commercial CaO. The high catalytic activity and stability of this catalyst was related to the organic modifier with a hydrophilic functional group that improved the diffusion of grease to the catalyst surface and prevented its hydration. The influence of several reaction parameters, such as temperature, catalyst loading and the moisture absorption rate of modified CaO, was investigated. From the results, the basic centers of modified CaO are stable and hardly poisoned by CO2 unlike commercial CaO. The catalyst was completely recyclable without significant loss in activity up to five reaction cycles. Moreover, this catalyst showed a promising future in providing an environmentally clean process for the industrial sector.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off