Efficiency of various semiconductor catalysts for photodegradation of Safranin-T

Efficiency of various semiconductor catalysts for photodegradation of Safranin-T Semiconductor photocatalysis often leads to partial or complete mineralization of organic pollutants. In this study, photocatalytic degradation of Safranin-T, a hazardous textile dye, has been investigated using various semiconductors such as titanium dioxide (TiO2), zinc oxide (ZnO), bismuth oxide (Bi2O3), cerium oxide (CeO2), yttrium oxide (Y2O3), and zirconium oxide (ZrO2). The experiments were carried out by irradiating the aqueous solution of Safranin-T containing photocatalysts with UV and air. Maximum decolorization of Safranin-T occurred with TiO2 (99.8%), followed by ZnO (80.3%), Bi2O3 (57.1%), CeO2 (13.1%), Y2O3 (12.2%), and ZrO2 (10.2%). The rate of photocatalytic degradation varied with increasing concentration of Safranin-T. The equilibrium degradation data of Safranin-T by TiO2 and ZnO were fitted to the Langmuir and Freundlich isotherm models. The Freundlich and Langmuir model showed satisfactory fit to the equilibrium degradation data for TiO2 and ZnO, respectively. Photocatalytic degradation of Safranin-T followed pseudo second-order kinetics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Efficiency of various semiconductor catalysts for photodegradation of Safranin-T

Loading next page...
 
/lp/springer_journal/efficiency-of-various-semiconductor-catalysts-for-photodegradation-of-W4MztzMjcm
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0474-9
Publisher site
See Article on Publisher Site

Abstract

Semiconductor photocatalysis often leads to partial or complete mineralization of organic pollutants. In this study, photocatalytic degradation of Safranin-T, a hazardous textile dye, has been investigated using various semiconductors such as titanium dioxide (TiO2), zinc oxide (ZnO), bismuth oxide (Bi2O3), cerium oxide (CeO2), yttrium oxide (Y2O3), and zirconium oxide (ZrO2). The experiments were carried out by irradiating the aqueous solution of Safranin-T containing photocatalysts with UV and air. Maximum decolorization of Safranin-T occurred with TiO2 (99.8%), followed by ZnO (80.3%), Bi2O3 (57.1%), CeO2 (13.1%), Y2O3 (12.2%), and ZrO2 (10.2%). The rate of photocatalytic degradation varied with increasing concentration of Safranin-T. The equilibrium degradation data of Safranin-T by TiO2 and ZnO were fitted to the Langmuir and Freundlich isotherm models. The Freundlich and Langmuir model showed satisfactory fit to the equilibrium degradation data for TiO2 and ZnO, respectively. Photocatalytic degradation of Safranin-T followed pseudo second-order kinetics.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 7, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off