Effects of wall roughness on turbulent junction flow characteristics

Effects of wall roughness on turbulent junction flow characteristics Global measurements of turbulent flows at wall–cylinder junctions are employed to quantify the effects of wall roughness on the behavior of the horseshoe vortex system (HVS). Two laboratory setups were considered: one with an impermeable smooth wall and a second characterized by a porous hydraulically rough bed. The measurements were obtained using planar particle image velocimetry. Time-averaged flow topology, turbulence statistics, and instantaneous fields associated with the streamwise and wall-normal velocity components are emphasized. Proper orthogonal decomposition (POD) is also applied on the velocity signals to probe into the characteristics of the energetic flow structures. For the Reynolds numbers studied here and the specific differences in the roughness geometry of the bed, a clear trend for the increase in flow incoherence due to the rough wall is documented. It is also demonstrated that, in the presence of roughness, vorticity and turbulence spread more evenly throughout the junction. On the other hand, qualitative and quantitative agreement between the smooth and rough bed tests is found in the structure of the downflow and the near-wall jet opposing the bulk flow. The efficiency of POD in analyzing turbulent junction flows is justified based on its results and metrics of modal energy distribution. POD verified in an objective way the role of integral components of the HVS dynamics such as the vortices comprising the system and their interplay with the wall. The decomposition furnishes new evidence about energetic structures that were not captured with the other data analysis methodologies. It also confirms the aperiodic behavior of the HVS for the investigated Reynolds numbers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effects of wall roughness on turbulent junction flow characteristics

Loading next page...
Springer Berlin Heidelberg
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial