Effects of UVB Radiation on the Physicochemical Properties of Fibroblasts and Keratinocytes

Effects of UVB Radiation on the Physicochemical Properties of Fibroblasts and Keratinocytes The skin is the largest human organ, providing the first line of defense to protect the body from physical and environmental effects. The aim of this study was to determine the influence of short-wave ultraviolet (UVB) radiation on the membrane electrical properties, phospholipid content, and lipid peroxidation levels of fibroblasts and keratinocytes. Changes in cell function may affect the basal electrical surface properties of cell membranes. These changes can be detected using electrokinetic measurements. In this study, the surface charge densities of fibroblasts and keratinocytes were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the ions in solution and on cell membrane surfaces. Agreement was found between the experimental and theoretical charge variation curves of leukemia cells from pH 2.5 to pH 9. Phospholipid composition was determined qualitatively and quantitatively by HPLC, and lipid peroxidation was estimated by measuring the level of malondialdehyde. The acidic functional group concentrations and average association constants with hydroxyl ions were higher, and the average association constants with hydrogen ions were smaller in UVB-treated skin cell membranes compared to those in untreated cells. Moreover, our results showed that UVB radiation is associated with increased levels of phospholipids and lipid peroxidation products in fibroblasts and keratinocytes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of UVB Radiation on the Physicochemical Properties of Fibroblasts and Keratinocytes

Loading next page...
 
/lp/springer_journal/effects-of-uvb-radiation-on-the-physicochemical-properties-of-SVIMbbt4q0
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-016-9870-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial