Effects of two-dimensional V-shaped grooves on turbulent channel flow

Effects of two-dimensional V-shaped grooves on turbulent channel flow Detailed Laser Doppler velocimeter (LDV) measurements have been carried out in a turbulent rectangular channel flow with one rough wall. The roughness elements of two-dimensional spanwise 120° V-shaped grooves are periodically arranged with different depths and pitches. The Reynolds number based on the centerline velocity, and the channel half height ranges from 2,740 to 20,000. The comparisons of turbulence statistics over smooth and rough walls indicate that the present roughness leads to a significant change in the turbulence both in the inner and in the outer flow. Particularly, the distribution density of the grooves is a key parameter to evaluate the effect of roughness. The low-Reynolds-number dependence of turbulence statistics is also observed. The rough walls with the same pitch-to-depth ratio exhibit the equivalent roughness function under the corresponding Reynolds numbers. The disagreement of velocity defect profiles between smooth and rough walls challenges the defect universal law. The variations of the turbulence stresses and Reynolds shear stress decomposition in the outer layer suggest that the turbulent motions may be modified by the present grooves. The importance of sweep events for the present groove-roughened walls is reflected by the differences in relative contribution to Reynolds shear stress from each quadrant and the higher-order moments over smooth and rough walls. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effects of two-dimensional V-shaped grooves on turbulent channel flow

Loading next page...
 
/lp/springer_journal/effects-of-two-dimensional-v-shaped-grooves-on-turbulent-channel-flow-sD0s3uS6bQ
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1223-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial