Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid

Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid Photocatalytic degradation (PCD) reactions of cationic methylene blue (MB) and anionic humic acid (HA) were studied in naked TiO2 and fluorinated TiO2 (F-TiO2) suspensions in order to investigate how the modification of the TiO2 surface functional group influenced PCD reactions. Adsorption behaviors of MB and HA in the naked TiO2 followed a typical pH-dependent electrostatic interaction mechanism. On the other hand, those in the F-TiO2 were markedly changed and even showed a reversed dependence in specific pH ranges due to surface fluoride interrupting the interaction of substrates and surface titanol groups. PCD rates of MB (k MB) and its N-demethylation (Δλ max) were significantly increased by surface fluorination below circum-neutral pH range, in particular, by a factor of 12 and 54 at pH 2, respectively. In the case of HA, the fluorination had an insignificant effect on its degradation rate but appeared to change its degradation behavior. It has been suggested that, although the primary effect of fluorination enhances the photocatalytic production of hydroxyl radicals, the change in electrostatic interaction with substrates could affect PCD as well. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid

Loading next page...
 
/lp/springer_journal/effects-of-tio2-surface-fluorination-on-photocatalytic-degradation-of-ccgVqisR4s
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0123-8
Publisher site
See Article on Publisher Site

Abstract

Photocatalytic degradation (PCD) reactions of cationic methylene blue (MB) and anionic humic acid (HA) were studied in naked TiO2 and fluorinated TiO2 (F-TiO2) suspensions in order to investigate how the modification of the TiO2 surface functional group influenced PCD reactions. Adsorption behaviors of MB and HA in the naked TiO2 followed a typical pH-dependent electrostatic interaction mechanism. On the other hand, those in the F-TiO2 were markedly changed and even showed a reversed dependence in specific pH ranges due to surface fluoride interrupting the interaction of substrates and surface titanol groups. PCD rates of MB (k MB) and its N-demethylation (Δλ max) were significantly increased by surface fluorination below circum-neutral pH range, in particular, by a factor of 12 and 54 at pH 2, respectively. In the case of HA, the fluorination had an insignificant effect on its degradation rate but appeared to change its degradation behavior. It has been suggested that, although the primary effect of fluorination enhances the photocatalytic production of hydroxyl radicals, the change in electrostatic interaction with substrates could affect PCD as well.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 10, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off