Effects of the Removal of Soil Extractable Oxytetracycline Fractions on Its Bioaccumulation in Earthworm and Horsebean

Effects of the Removal of Soil Extractable Oxytetracycline Fractions on Its Bioaccumulation in... This study provides the evidence for oxytetracycline (OTC) uptake by earthworm and horsebean after removing extractable OTC in cinnamon soil using water (T1), 0.1 mol/L CaCl2 (T2), and 0.1 mol/L Na2EDTA-McIlvaine (T3), respectively. The control was the soil without removing any extractable OTC. During horsebean exposure, the transformation from non-extractable to extractable fractions in soils depended mainly on the alternation of wetting and drying. Two organisms increased significantly OTC concentrations of McIlvaine-fraction in soils in comparison to the absence of organisms. The removal promoted the accumulation concentration and the bioaccumulation factor (BAF) of OTC in two organisms as the order: T3 > T2/T1 > the control. And the promotion was stronger for horsebean than ones for earthworm. OTC accumulation in earthworm was mainly from the digestion absorption due to limited soil extractable OTC (0–0.976 mg/kg). OTC uptake by horsebean was directly through root uptake; therefore, the removal of soil extractable fractions decreased significantly OTC accumulation in root. However, the removal promoted OTC accumulation in shoot and OTC translocation from root to shoot, especially with the highest transfer factor (TF) in T3 reaching up to 31.7. Maybe, in T3, this was caused by the combined effect of root as the effective transport passageway of OTC and less loss of soil extractable OTC released during 28-day exposure. These present results demonstrated the high ecological risk of remained OTC in cinnamon soil after removing all extractable fractions due to its high accumulation in soil organisms and the strong transformation from soil non-extractable to extractable fraction under certain cultivation conditions such as alternation of wetting and drying. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water, Air, & Soil Pollution Springer Journals

Effects of the Removal of Soil Extractable Oxytetracycline Fractions on Its Bioaccumulation in Earthworm and Horsebean

Loading next page...
 
/lp/springer_journal/effects-of-the-removal-of-soil-extractable-oxytetracycline-fractions-w3BobywDV6
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Environment; Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts
ISSN
0049-6979
eISSN
1573-2932
D.O.I.
10.1007/s11270-018-3742-0
Publisher site
See Article on Publisher Site

Abstract

This study provides the evidence for oxytetracycline (OTC) uptake by earthworm and horsebean after removing extractable OTC in cinnamon soil using water (T1), 0.1 mol/L CaCl2 (T2), and 0.1 mol/L Na2EDTA-McIlvaine (T3), respectively. The control was the soil without removing any extractable OTC. During horsebean exposure, the transformation from non-extractable to extractable fractions in soils depended mainly on the alternation of wetting and drying. Two organisms increased significantly OTC concentrations of McIlvaine-fraction in soils in comparison to the absence of organisms. The removal promoted the accumulation concentration and the bioaccumulation factor (BAF) of OTC in two organisms as the order: T3 > T2/T1 > the control. And the promotion was stronger for horsebean than ones for earthworm. OTC accumulation in earthworm was mainly from the digestion absorption due to limited soil extractable OTC (0–0.976 mg/kg). OTC uptake by horsebean was directly through root uptake; therefore, the removal of soil extractable fractions decreased significantly OTC accumulation in root. However, the removal promoted OTC accumulation in shoot and OTC translocation from root to shoot, especially with the highest transfer factor (TF) in T3 reaching up to 31.7. Maybe, in T3, this was caused by the combined effect of root as the effective transport passageway of OTC and less loss of soil extractable OTC released during 28-day exposure. These present results demonstrated the high ecological risk of remained OTC in cinnamon soil after removing all extractable fractions due to its high accumulation in soil organisms and the strong transformation from soil non-extractable to extractable fraction under certain cultivation conditions such as alternation of wetting and drying.

Journal

Water, Air, & Soil PollutionSpringer Journals

Published: Feb 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off