Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum

Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter... We have previously shown by RNA gel blot analyses that the tobacco polyubiquitin-encoding gene Ubi.U4 is expressed in a complex pattern during plant development (Genschik et al., 1994). In order to study its tissue-specific expression, we cloned the fragment containing the −263 bp proximal promoter of the gene, the leader intron and the first ubiquitin monomer in front of the reporter GUS gene. Histochemical analyses for GUS activity during tobacco plant development revealed that the gene is expressed at variable amounts in many plant tissues with high levels in metabolically active and/or dividing cells and in the vascular tissues of the plant. We also analysed the expression pattern of constructs in which either the intron or the intron together with the first ubiquitin monomer were deleted. Our results indicate that the ubiquitin leader intron is not only a quantitative determinant of gene expression but may also influence the tissue-specific expression pattern. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum

Loading next page...
 
/lp/springer_journal/effects-of-the-polyubiquitin-gene-ubi-u4-leader-intron-and-first-uffDATDLXa
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1010671405594
Publisher site
See Article on Publisher Site

Abstract

We have previously shown by RNA gel blot analyses that the tobacco polyubiquitin-encoding gene Ubi.U4 is expressed in a complex pattern during plant development (Genschik et al., 1994). In order to study its tissue-specific expression, we cloned the fragment containing the −263 bp proximal promoter of the gene, the leader intron and the first ubiquitin monomer in front of the reporter GUS gene. Histochemical analyses for GUS activity during tobacco plant development revealed that the gene is expressed at variable amounts in many plant tissues with high levels in metabolically active and/or dividing cells and in the vascular tissues of the plant. We also analysed the expression pattern of constructs in which either the intron or the intron together with the first ubiquitin monomer were deleted. Our results indicate that the ubiquitin leader intron is not only a quantitative determinant of gene expression but may also influence the tissue-specific expression pattern.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off