Effects of the friction coefficient of a barrel on the grinding performance of a planetary ball mill

Effects of the friction coefficient of a barrel on the grinding performance of a planetary ball mill We investigated the effect of the friction coefficients of a barrel on the grinding performance of multi-layer ceramic capacitors (MLCCs) in a planetary ball mill. We formulated the motion equation of the MLCCs, including gravitational force, interactive force due to collisions and the drag force in a planetary ball mill, using the three-dimensional discrete element method. The contact model in a collision between two MLCCs is represented by the Voigt model. The linear velocity, impact and shear energy according to the friction coefficients of a barrel were calculated. The trajectory of a single MLCC and the linear velocity distributions of many MLCCs were analyzed. It was found that an increase of the friction coefficient of a barrel not only improves the shear energy, but also reduces the impact. Finally, grinding experiments using four barrels with different friction coefficients were conducted to verify the simulated result. The measured wear height accurately matches the height expected from the simulated shear energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microsystem Technologies Springer Journals

Effects of the friction coefficient of a barrel on the grinding performance of a planetary ball mill

Loading next page...
 
/lp/springer_journal/effects-of-the-friction-coefficient-of-a-barrel-on-the-grinding-03ZLCzGv3J
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Electronics and Microelectronics, Instrumentation; Nanotechnology; Mechanical Engineering
ISSN
0946-7076
eISSN
1432-1858
D.O.I.
10.1007/s00542-018-3974-3
Publisher site
See Article on Publisher Site

Abstract

We investigated the effect of the friction coefficients of a barrel on the grinding performance of multi-layer ceramic capacitors (MLCCs) in a planetary ball mill. We formulated the motion equation of the MLCCs, including gravitational force, interactive force due to collisions and the drag force in a planetary ball mill, using the three-dimensional discrete element method. The contact model in a collision between two MLCCs is represented by the Voigt model. The linear velocity, impact and shear energy according to the friction coefficients of a barrel were calculated. The trajectory of a single MLCC and the linear velocity distributions of many MLCCs were analyzed. It was found that an increase of the friction coefficient of a barrel not only improves the shear energy, but also reduces the impact. Finally, grinding experiments using four barrels with different friction coefficients were conducted to verify the simulated result. The measured wear height accurately matches the height expected from the simulated shear energy.

Journal

Microsystem TechnologiesSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off