Effects of temperature on extracellular hydrolase enzymes from soil microfungi

Effects of temperature on extracellular hydrolase enzymes from soil microfungi Soil microbes play important roles in global carbon and nutrient cycling. Soil microfungi are generally amongst the most important contributors. They produce various extracellular hydrolase enzymes that break down the complex organic molecules in the soil into simpler form. In this study, we investigated patterns of amylase and cellulase (which are responsible for breaking down starch and cellulose, respectively) relative activity (RA) on solid media at different culture temperatures in fungal strains from Arctic, Antarctic and tropical soils. Fungal isolates from all three regions were inoculated onto R2A media supplemented with starch for amylase and carboxymethylcellulose and trypan blue for cellulase screening. The isolates were then incubated at 4, 10, 15, 20, 25, 30, 35 and 40 °C and examined for activity after 5 and 10 days, for tropical and polar isolates, respectively. The data obtained indicate that the polar fungal strains exhibited similar patterns of amylase and cellulase RA. Both Arctic and Antarctic fungi showed highest RA for amylase and cellulase at 35 °C, while colony growth was maximised at 15 °C. Colony growth and RA of the polar isolates were negatively correlated suggesting that, as temperatures increase, the cells become stressed and have fewer resources available to invest in growth. Unlike polar isolates, tropical isolates did not exhibit any trend of colony growth with temperature, rather having idiosyncratic patterns in each isolate. The low enzyme production and RA levels in the tropical strains may suggest both a low ability to respond to temperature variation in their natural thermally stable tropical habitats, as well as a level of thermal stress limiting their enzyme production ability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polar Biology Springer Journals

Effects of temperature on extracellular hydrolase enzymes from soil microfungi

Loading next page...
 
/lp/springer_journal/effects-of-temperature-on-extracellular-hydrolase-enzymes-from-soil-xxl0H1DK3H
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Ecology; Oceanography; Microbiology; Plant Sciences; Zoology
ISSN
0722-4060
eISSN
1432-2056
D.O.I.
10.1007/s00300-017-2215-z
Publisher site
See Article on Publisher Site

Abstract

Soil microbes play important roles in global carbon and nutrient cycling. Soil microfungi are generally amongst the most important contributors. They produce various extracellular hydrolase enzymes that break down the complex organic molecules in the soil into simpler form. In this study, we investigated patterns of amylase and cellulase (which are responsible for breaking down starch and cellulose, respectively) relative activity (RA) on solid media at different culture temperatures in fungal strains from Arctic, Antarctic and tropical soils. Fungal isolates from all three regions were inoculated onto R2A media supplemented with starch for amylase and carboxymethylcellulose and trypan blue for cellulase screening. The isolates were then incubated at 4, 10, 15, 20, 25, 30, 35 and 40 °C and examined for activity after 5 and 10 days, for tropical and polar isolates, respectively. The data obtained indicate that the polar fungal strains exhibited similar patterns of amylase and cellulase RA. Both Arctic and Antarctic fungi showed highest RA for amylase and cellulase at 35 °C, while colony growth was maximised at 15 °C. Colony growth and RA of the polar isolates were negatively correlated suggesting that, as temperatures increase, the cells become stressed and have fewer resources available to invest in growth. Unlike polar isolates, tropical isolates did not exhibit any trend of colony growth with temperature, rather having idiosyncratic patterns in each isolate. The low enzyme production and RA levels in the tropical strains may suggest both a low ability to respond to temperature variation in their natural thermally stable tropical habitats, as well as a level of thermal stress limiting their enzyme production ability.

Journal

Polar BiologySpringer Journals

Published: Nov 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off