Effects of storm size and frequency on nitrogen retention, denitrification, and N2O production in bioretention swale mesocosms

Effects of storm size and frequency on nitrogen retention, denitrification, and N2O production in... Reported nitrogen (N) retention efficiencies for bioretention swales vary widely, but reasons for this are not well-understood, in part because almost no studies have measured (or characterized controls on) bioretention swale denitrification. Here, we apply a novel N2:Ar-based approach, in coordination with more established approaches, to estimate denitrification rates and compare bioretention N dynamics during artificial storms of two sizes (3.05 and 5.08 cm days−1) and following 4 inter-storm periods (initial storm with no prior storm, 1-, 7-, and 13-days). Denitrification rates during storms occurring after 7-days (520 ± 150 µmol N m−2 h−1) were significantly higher than those during an initialization storm (13 ± 34 µmol N m−2 h−1) or during a storm occurring one day after a previous storm (−63 ± 65 µmol N m−2 h−1). No significant differences in N processing were observed between 3.05 and 5.08 cm days−1 storms. Somewhat surprisingly, in all experiments [O2] remained near saturated, and N2O emissions were very low or undetectable. Mesocosms were largely a net sink for dissolved inorganic N (DIN) and a net source of dissolved organic N (DON). Denitrification was neither a dominant nor consistent pathway for N removal, accounting for a maximum of 23 ± 11% of DIN removal. Future research should continue to evaluate N assimilation as a N removal pathway in bioretention swales, as well as characterize N dynamics during unsaturated conditions associated with smaller rain events and during periods between the large storms examined here. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biogeochemistry Springer Journals

Effects of storm size and frequency on nitrogen retention, denitrification, and N2O production in bioretention swale mesocosms

Loading next page...
 
/lp/springer_journal/effects-of-storm-size-and-frequency-on-nitrogen-retention-mrYsTBA1RY
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Earth Sciences; Biogeosciences; Ecosystems; Environmental Chemistry; Life Sciences, general
ISSN
0168-2563
eISSN
1573-515X
D.O.I.
10.1007/s10533-017-0365-2
Publisher site
See Article on Publisher Site

Abstract

Reported nitrogen (N) retention efficiencies for bioretention swales vary widely, but reasons for this are not well-understood, in part because almost no studies have measured (or characterized controls on) bioretention swale denitrification. Here, we apply a novel N2:Ar-based approach, in coordination with more established approaches, to estimate denitrification rates and compare bioretention N dynamics during artificial storms of two sizes (3.05 and 5.08 cm days−1) and following 4 inter-storm periods (initial storm with no prior storm, 1-, 7-, and 13-days). Denitrification rates during storms occurring after 7-days (520 ± 150 µmol N m−2 h−1) were significantly higher than those during an initialization storm (13 ± 34 µmol N m−2 h−1) or during a storm occurring one day after a previous storm (−63 ± 65 µmol N m−2 h−1). No significant differences in N processing were observed between 3.05 and 5.08 cm days−1 storms. Somewhat surprisingly, in all experiments [O2] remained near saturated, and N2O emissions were very low or undetectable. Mesocosms were largely a net sink for dissolved inorganic N (DIN) and a net source of dissolved organic N (DON). Denitrification was neither a dominant nor consistent pathway for N removal, accounting for a maximum of 23 ± 11% of DIN removal. Future research should continue to evaluate N assimilation as a N removal pathway in bioretention swales, as well as characterize N dynamics during unsaturated conditions associated with smaller rain events and during periods between the large storms examined here.

Journal

BiogeochemistrySpringer Journals

Published: Aug 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off