Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf

Effects of spring onset and summer duration on fish species distribution and biomass along the... Studies documenting distributional shifts of fishes typically rely on time series of annual sampling events with fixed seasonal timing and limited temporal range. Meanwhile, as temperatures along the Northeast continental shelf have increased, the seasonal cycle also shifted towards earlier spring warming and longer summers. Seasonal migrations of fish and macroinvertebrates on the continental shelf in the Northeast US are thought to be primarily controlled by temperature and as such likely follow the temperature phenology of the shelf. This study sought to determine whether apparent changes in fish biomass and distributions are linked to spring warming phenology and/or duration of summer, the effective growing season for most species. We hypothesized that the earlier spring thermal transition would occur earlier and would cause centers of biomass to be more poleward during the spring survey. We also expected lengthening summers, primarily a function of later fall cooling, to cause centers of biomass in the fall survey to be more poleward and for biomass on the shelf to be greater within and following longer growing seasons. We did not detect a strong effect of the timing of the spring thermal transition in sea surface temperature on the distribution or abundance for most of the 43 fish stocks that we examined. However, later fall cooling and longer summers had a strong effect on both abundance and biomass of many fish stocks. These findings suggest that more focus should be placed on the length of the growing season and population-level processes that result in distributional shifts and changes in abundance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf

Loading next page...
 
/lp/springer_journal/effects-of-spring-onset-and-summer-duration-on-fish-species-oX9vRNQc7B
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-017-9487-9
Publisher site
See Article on Publisher Site

Abstract

Studies documenting distributional shifts of fishes typically rely on time series of annual sampling events with fixed seasonal timing and limited temporal range. Meanwhile, as temperatures along the Northeast continental shelf have increased, the seasonal cycle also shifted towards earlier spring warming and longer summers. Seasonal migrations of fish and macroinvertebrates on the continental shelf in the Northeast US are thought to be primarily controlled by temperature and as such likely follow the temperature phenology of the shelf. This study sought to determine whether apparent changes in fish biomass and distributions are linked to spring warming phenology and/or duration of summer, the effective growing season for most species. We hypothesized that the earlier spring thermal transition would occur earlier and would cause centers of biomass to be more poleward during the spring survey. We also expected lengthening summers, primarily a function of later fall cooling, to cause centers of biomass in the fall survey to be more poleward and for biomass on the shelf to be greater within and following longer growing seasons. We did not detect a strong effect of the timing of the spring thermal transition in sea surface temperature on the distribution or abundance for most of the 43 fish stocks that we examined. However, later fall cooling and longer summers had a strong effect on both abundance and biomass of many fish stocks. These findings suggest that more focus should be placed on the length of the growing season and population-level processes that result in distributional shifts and changes in abundance.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Jun 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off