Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf

Effects of spring onset and summer duration on fish species distribution and biomass along the... Studies documenting distributional shifts of fishes typically rely on time series of annual sampling events with fixed seasonal timing and limited temporal range. Meanwhile, as temperatures along the Northeast continental shelf have increased, the seasonal cycle also shifted towards earlier spring warming and longer summers. Seasonal migrations of fish and macroinvertebrates on the continental shelf in the Northeast US are thought to be primarily controlled by temperature and as such likely follow the temperature phenology of the shelf. This study sought to determine whether apparent changes in fish biomass and distributions are linked to spring warming phenology and/or duration of summer, the effective growing season for most species. We hypothesized that the earlier spring thermal transition would occur earlier and would cause centers of biomass to be more poleward during the spring survey. We also expected lengthening summers, primarily a function of later fall cooling, to cause centers of biomass in the fall survey to be more poleward and for biomass on the shelf to be greater within and following longer growing seasons. We did not detect a strong effect of the timing of the spring thermal transition in sea surface temperature on the distribution or abundance for most of the 43 fish stocks that we examined. However, later fall cooling and longer summers had a strong effect on both abundance and biomass of many fish stocks. These findings suggest that more focus should be placed on the length of the growing season and population-level processes that result in distributional shifts and changes in abundance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf

Loading next page...
 
/lp/springer_journal/effects-of-spring-onset-and-summer-duration-on-fish-species-oX9vRNQc7B
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-017-9487-9
Publisher site
See Article on Publisher Site

Abstract

Studies documenting distributional shifts of fishes typically rely on time series of annual sampling events with fixed seasonal timing and limited temporal range. Meanwhile, as temperatures along the Northeast continental shelf have increased, the seasonal cycle also shifted towards earlier spring warming and longer summers. Seasonal migrations of fish and macroinvertebrates on the continental shelf in the Northeast US are thought to be primarily controlled by temperature and as such likely follow the temperature phenology of the shelf. This study sought to determine whether apparent changes in fish biomass and distributions are linked to spring warming phenology and/or duration of summer, the effective growing season for most species. We hypothesized that the earlier spring thermal transition would occur earlier and would cause centers of biomass to be more poleward during the spring survey. We also expected lengthening summers, primarily a function of later fall cooling, to cause centers of biomass in the fall survey to be more poleward and for biomass on the shelf to be greater within and following longer growing seasons. We did not detect a strong effect of the timing of the spring thermal transition in sea surface temperature on the distribution or abundance for most of the 43 fish stocks that we examined. However, later fall cooling and longer summers had a strong effect on both abundance and biomass of many fish stocks. These findings suggest that more focus should be placed on the length of the growing season and population-level processes that result in distributional shifts and changes in abundance.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Jun 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off