Effects of signal power control strategies and wavelength assignment algorithms on circuit OSNR in WDM networks

Effects of signal power control strategies and wavelength assignment algorithms on circuit OSNR... Software-defined networking is enabling wavelength-division multiplexed (WDM) networks to be programmable down to individual components. While taking into account typical gain and noise figure profiles of erbium-doped fiber amplifier (EDFA) components, the authors consider a number of signal power control strategies and compare their performance in terms of achievable lightpath optical signal-to-noise ratio (OSNR). These strategies are applied network-wide to concurrently control the gain of each individual amplifier and the signal power equalization at each reconfigurable optical add/drop multiplexer. Simulation and (in part) experimental results show that the lightpath OSNR is affected by three factors: the EDFA gain control strategy, power equalization strategy and wavelength assignment (WA) algorithm. A trade-off between lightpath average OSNR and OSNR variance across the WDM channels is also noted. Experimental work is conducted using a five-node meshed WDM network testbed proving both feasibility and effectiveness of a coordinated use of signal power control strategies and WA algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Effects of signal power control strategies and wavelength assignment algorithms on circuit OSNR in WDM networks

Loading next page...
 
/lp/springer_journal/effects-of-signal-power-control-strategies-and-wavelength-assignment-fbCme60efp
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0596-x
Publisher site
See Article on Publisher Site

Abstract

Software-defined networking is enabling wavelength-division multiplexed (WDM) networks to be programmable down to individual components. While taking into account typical gain and noise figure profiles of erbium-doped fiber amplifier (EDFA) components, the authors consider a number of signal power control strategies and compare their performance in terms of achievable lightpath optical signal-to-noise ratio (OSNR). These strategies are applied network-wide to concurrently control the gain of each individual amplifier and the signal power equalization at each reconfigurable optical add/drop multiplexer. Simulation and (in part) experimental results show that the lightpath OSNR is affected by three factors: the EDFA gain control strategy, power equalization strategy and wavelength assignment (WA) algorithm. A trade-off between lightpath average OSNR and OSNR variance across the WDM channels is also noted. Experimental work is conducted using a five-node meshed WDM network testbed proving both feasibility and effectiveness of a coordinated use of signal power control strategies and WA algorithms.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jan 14, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off