Effects of SDF-1/CXCR4 on the Repair of Traumatic Brain Injury in Rats by Mediating Bone Marrow Derived Mesenchymal Stem Cells

Effects of SDF-1/CXCR4 on the Repair of Traumatic Brain Injury in Rats by Mediating Bone Marrow... Our study aims to investigate the effects of the SDF-1/CXCR4 axis on the repair of traumatic brain injury (TBI) in rats by mediating bone marrow derived from mesenchymal stem cells (BMSCs). Healthy male SD rats were collected, their tibiofibulars were removed, cultured, and BMSCs were collected. The expression of cell-surface molecular proteins was examined using flow cytometry. The mRNA and protein expression of CXCR4 in cells were tested using qRT-PCR and western blotting analysis. An electronic brain injury instrument was utilized to build TBI rat models and each rat was assigned into the experiment, positive control and control groups (10 rats in each group). The morris water maze was used to calculate the escape latency and number of times rats in each group crossed the platform. Neurological severity scores (NSS) was calculated to evaluate the recovery of neurological functioning. The distribution of neuronal nuclear antigens was detected using double-labeling immunohistochemistry. The morphological changes in the hippocampal neuronal and the number of BrdU-positive cells were observed through Nissl’s staining and high magnification. The mRNA and protein expressions of CXCR4 were gradually increased as SDF-1 concentration increased. NGF and BDNF positive cells were expressed in each group. The distribution of neuronal nuclear antigens in the experiment group was elevated compared to the control and positive control groups. Among the three groups, the experimental group had the shortest escape latency and the highest number platform crossings. The difference in NSS among the three groups was significant. The experimental group had better cell morphology and a higher number of BrdU-positive cells than the other groups. The present study demonstrates that transplanting BMSCs with SDF-1-induced CXCR4 expression can promote the repair of TBI. This is expected to become a new treatment regimen for TBI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular and Molecular Neurobiology Springer Journals

Effects of SDF-1/CXCR4 on the Repair of Traumatic Brain Injury in Rats by Mediating Bone Marrow Derived Mesenchymal Stem Cells

Loading next page...
 
/lp/springer_journal/effects-of-sdf-1-cxcr4-on-the-repair-of-traumatic-brain-injury-in-rats-kiQQegnSUs
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Cell Biology; Neurobiology
ISSN
0272-4340
eISSN
1573-6830
D.O.I.
10.1007/s10571-017-0490-4
Publisher site
See Article on Publisher Site

Abstract

Our study aims to investigate the effects of the SDF-1/CXCR4 axis on the repair of traumatic brain injury (TBI) in rats by mediating bone marrow derived from mesenchymal stem cells (BMSCs). Healthy male SD rats were collected, their tibiofibulars were removed, cultured, and BMSCs were collected. The expression of cell-surface molecular proteins was examined using flow cytometry. The mRNA and protein expression of CXCR4 in cells were tested using qRT-PCR and western blotting analysis. An electronic brain injury instrument was utilized to build TBI rat models and each rat was assigned into the experiment, positive control and control groups (10 rats in each group). The morris water maze was used to calculate the escape latency and number of times rats in each group crossed the platform. Neurological severity scores (NSS) was calculated to evaluate the recovery of neurological functioning. The distribution of neuronal nuclear antigens was detected using double-labeling immunohistochemistry. The morphological changes in the hippocampal neuronal and the number of BrdU-positive cells were observed through Nissl’s staining and high magnification. The mRNA and protein expressions of CXCR4 were gradually increased as SDF-1 concentration increased. NGF and BDNF positive cells were expressed in each group. The distribution of neuronal nuclear antigens in the experiment group was elevated compared to the control and positive control groups. Among the three groups, the experimental group had the shortest escape latency and the highest number platform crossings. The difference in NSS among the three groups was significant. The experimental group had better cell morphology and a higher number of BrdU-positive cells than the other groups. The present study demonstrates that transplanting BMSCs with SDF-1-induced CXCR4 expression can promote the repair of TBI. This is expected to become a new treatment regimen for TBI.

Journal

Cellular and Molecular NeurobiologySpringer Journals

Published: May 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off