Effects of salt stress on expression of nitrate transporter and assimilation-related genes in tomato roots

Effects of salt stress on expression of nitrate transporter and assimilation-related genes in... Nitrate is an essential nitrogen source for plant growth and development. The experiments on nitrate uptake by tomato (Solanum esculentum L., cv. L402) seedlings pretreated with 48-h nitrogen starvation and 24-h 75 mM NaCl stress were performed at four different NO3 concentrations. The results showed that salt stress decreased NO 3 − uptake regardless of the nitrate concentration. In order to study the effect of salt stress on nitrate transporters (NRT), nitrate reductase (NR), and glutamine synthetase (GS) gene expression patterns in young tomato roots, we analyzed the transcript levels of LeNRT, LeNR, and LeGS1 under 75 mM NaCl stress by the technique of real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results indicated that transcripts of LeNRT1.1 and LeNRT1.2 were significantly decreased, suggesting that LeNRT1 may be at least partly responsible for the reduction in nitrate uptake. The transcription of LeNRT2.1 was also decreased; but the mRNA levels of LeNRT2.2 and LeGS1.1 were not influenced dramatically; the transcription of LeNRT2.3 was slightly increased after 12-h salt stress. LeNR transcription in tomato roots exhibited transient up-regulation at 4-h salt treatment. However, the transcription of LeGS1.2 was significantly decreased under the salt treatment. Our results suggest that the down-regulation of LeNRT1 gene expression may be mainly involved in the reduction of nitrate uptake under severe salt stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of salt stress on expression of nitrate transporter and assimilation-related genes in tomato roots

Loading next page...
 
/lp/springer_journal/effects-of-salt-stress-on-expression-of-nitrate-transporter-and-10csCyHEV5
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708020106
Publisher site
See Article on Publisher Site

Abstract

Nitrate is an essential nitrogen source for plant growth and development. The experiments on nitrate uptake by tomato (Solanum esculentum L., cv. L402) seedlings pretreated with 48-h nitrogen starvation and 24-h 75 mM NaCl stress were performed at four different NO3 concentrations. The results showed that salt stress decreased NO 3 − uptake regardless of the nitrate concentration. In order to study the effect of salt stress on nitrate transporters (NRT), nitrate reductase (NR), and glutamine synthetase (GS) gene expression patterns in young tomato roots, we analyzed the transcript levels of LeNRT, LeNR, and LeGS1 under 75 mM NaCl stress by the technique of real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results indicated that transcripts of LeNRT1.1 and LeNRT1.2 were significantly decreased, suggesting that LeNRT1 may be at least partly responsible for the reduction in nitrate uptake. The transcription of LeNRT2.1 was also decreased; but the mRNA levels of LeNRT2.2 and LeGS1.1 were not influenced dramatically; the transcription of LeNRT2.3 was slightly increased after 12-h salt stress. LeNR transcription in tomato roots exhibited transient up-regulation at 4-h salt treatment. However, the transcription of LeGS1.2 was significantly decreased under the salt treatment. Our results suggest that the down-regulation of LeNRT1 gene expression may be mainly involved in the reduction of nitrate uptake under severe salt stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 20, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off