Effects of reinforcement content and sequential milling on the microstructural and mechanical properties of TiB2 particulate-reinforced eutectic Al-12.6wt% Si composites

Effects of reinforcement content and sequential milling on the microstructural and mechanical... This study reports the effects of reinforcement content (2, 5 and 10 wt%) and sequential milling on the microstructural, physical and mechanical properties of the TiB2 particulate-reinforced Al-12.6 wt% Si metal matrix composites (MMCs) prepared starting from Al, Si and TiB2 elemental powders. Sequential milling process included two different kinds of high-energy ball milling such as mechanical alloying (MA) and cryomilling (CM). MA experiments were carried out at room temperature for 4 h using a Spex™ 8000D Mixer/Mill. Subsequent CM experiments were conducted with externally circulated liquid N 2 for 10, 20 and 30 min using a Spex™ 6870 Freezer/Mill. Milled powders were compacted by cold uniaxial pressing under a pressure of 450 MPa and then by cold isostatic pressing (CIP) under 400 MPa. The green bodies were sintered at 570 °C for 2 h under Ar atmosphere. Characterization investigations of the samples were performed using X-ray diffractometer (XRD), TOPAS software, scanning electron microscope/energy-dispersive spectrometer (SEM/EDS) and particle size analyzer (PSA). Sintered samples were also characterized in terms of Archimedes density, Vickers microhardness and relative wear resistance. Composites sintered from the mechanically alloyed (MA’d) and 20 min of cryomilled (CM’d) powders exhibited the higher microhardness values than those of other sintered samples. Wear rates of the sintered samples slightly increased with increasing CM time. At a constant CM time of 20 min, wear rates incredibly decreased as TiB2 content increased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Effects of reinforcement content and sequential milling on the microstructural and mechanical properties of TiB2 particulate-reinforced eutectic Al-12.6wt% Si composites

Loading next page...
 
/lp/springer_journal/effects-of-reinforcement-content-and-sequential-milling-on-the-c0NKcqEq0a
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1687-0
Publisher site
See Article on Publisher Site

Abstract

This study reports the effects of reinforcement content (2, 5 and 10 wt%) and sequential milling on the microstructural, physical and mechanical properties of the TiB2 particulate-reinforced Al-12.6 wt% Si metal matrix composites (MMCs) prepared starting from Al, Si and TiB2 elemental powders. Sequential milling process included two different kinds of high-energy ball milling such as mechanical alloying (MA) and cryomilling (CM). MA experiments were carried out at room temperature for 4 h using a Spex™ 8000D Mixer/Mill. Subsequent CM experiments were conducted with externally circulated liquid N 2 for 10, 20 and 30 min using a Spex™ 6870 Freezer/Mill. Milled powders were compacted by cold uniaxial pressing under a pressure of 450 MPa and then by cold isostatic pressing (CIP) under 400 MPa. The green bodies were sintered at 570 °C for 2 h under Ar atmosphere. Characterization investigations of the samples were performed using X-ray diffractometer (XRD), TOPAS software, scanning electron microscope/energy-dispersive spectrometer (SEM/EDS) and particle size analyzer (PSA). Sintered samples were also characterized in terms of Archimedes density, Vickers microhardness and relative wear resistance. Composites sintered from the mechanically alloyed (MA’d) and 20 min of cryomilled (CM’d) powders exhibited the higher microhardness values than those of other sintered samples. Wear rates of the sintered samples slightly increased with increasing CM time. At a constant CM time of 20 min, wear rates incredibly decreased as TiB2 content increased.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off