Effects of pre-recovery on the recrystallization microstructure and texture of high-purity tantalum

Effects of pre-recovery on the recrystallization microstructure and texture of high-purity tantalum The effects of recovery on the subsequent recrystallization of tantalum were investigated via two-step annealing at two temperatures. Transmission electron microscopy, electron back-scattered diffraction, and X-ray diffraction were employed to determine the respective microstructures and textures after various annealing regimes. The results show that many large grains with {111} <uvw> orientations are developed when heating at 1573 K without pre-recovery, while pre-recovery can introduce a homogeneous fine microstructure and weaken the texture. This difference can be attributed to the recovery-induced change in nucleation mechanisms. Elongated grains stretch along grain boundaries or locate in the interior of deformed grains, mainly due to the heterogeneous distribution of stored energy. Dislocations characterized by submicron bands in the deformed state evolve into sub-grains during pre-recovery and grow continuously, indicating a homogeneous distribution of dislocation or stored energy after pre-recovery, which can significantly influence subsequent nucleation and grain growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Effects of pre-recovery on the recrystallization microstructure and texture of high-purity tantalum

Loading next page...
 
/lp/springer_journal/effects-of-pre-recovery-on-the-recrystallization-microstructure-and-AlP026QKM0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1732-z
Publisher site
See Article on Publisher Site

Abstract

The effects of recovery on the subsequent recrystallization of tantalum were investigated via two-step annealing at two temperatures. Transmission electron microscopy, electron back-scattered diffraction, and X-ray diffraction were employed to determine the respective microstructures and textures after various annealing regimes. The results show that many large grains with {111} <uvw> orientations are developed when heating at 1573 K without pre-recovery, while pre-recovery can introduce a homogeneous fine microstructure and weaken the texture. This difference can be attributed to the recovery-induced change in nucleation mechanisms. Elongated grains stretch along grain boundaries or locate in the interior of deformed grains, mainly due to the heterogeneous distribution of stored energy. Dislocations characterized by submicron bands in the deformed state evolve into sub-grains during pre-recovery and grow continuously, indicating a homogeneous distribution of dislocation or stored energy after pre-recovery, which can significantly influence subsequent nucleation and grain growth.

Journal

Journal of Materials ScienceSpringer Journals

Published: Nov 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off