Effects of pitching phase angle and amplitude on a two-dimensional flapping wing in hovering mode

Effects of pitching phase angle and amplitude on a two-dimensional flapping wing in hovering mode This paper reports on a fundamental investigation of the effects of pitching phase angle (ϕ) and pitching amplitude (α A) on the aerodynamics of a two-dimensional (2D) flapping wing executing simple harmonic motion in hovering mode. A force sensor and digital particle image velocimetry were employed to obtain the time-dependent aerodynamic forces acting on the wing and the associated flow structures, respectively. Pitching phase angle ranging from 0° to 360° at three different pitching amplitudes, that is, 30°, 45° and 60°, was studied. Our experimental results revealed that the largest lift and lift/drag ratio were achieved under the condition of advanced pitching (ϕ > 90°). However, further increasing ϕ beyond a certain value would not enhance the average lift any more. In contrast, the delayed pitching (ϕ < 90°) would cause the average lift to decrease and generally the averaged drag to increase, compared to the normal pitching (ϕ = 90°), overall reducing the lift/drag ratio greatly. Our experimental results also supported the findings of Lua et al. (J Exp Fluids 51:177–195, 2011) that there are two kinds of wing–wake interactions, and they can either enhance or reduce lift on the wing depending on the wing motion and the timing of the reverse stroke. Our results show that wing–wake interaction of the first kind normally has an adverse effect on lift generation when the wing is undergoing delayed pitching but has a positive effect on the lift when the wing is undergoing advanced pitching motion. When the ϕ became larger, the second kind of wing–wake interaction, that is, sliding of the leading edge vortex under the wing, will cause the concurrent fall in lift and drag. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effects of pitching phase angle and amplitude on a two-dimensional flapping wing in hovering mode

Loading next page...
 
/lp/springer_journal/effects-of-pitching-phase-angle-and-amplitude-on-a-two-dimensional-MIM6cMOBPX
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1907-9
Publisher site
See Article on Publisher Site

Abstract

This paper reports on a fundamental investigation of the effects of pitching phase angle (ϕ) and pitching amplitude (α A) on the aerodynamics of a two-dimensional (2D) flapping wing executing simple harmonic motion in hovering mode. A force sensor and digital particle image velocimetry were employed to obtain the time-dependent aerodynamic forces acting on the wing and the associated flow structures, respectively. Pitching phase angle ranging from 0° to 360° at three different pitching amplitudes, that is, 30°, 45° and 60°, was studied. Our experimental results revealed that the largest lift and lift/drag ratio were achieved under the condition of advanced pitching (ϕ > 90°). However, further increasing ϕ beyond a certain value would not enhance the average lift any more. In contrast, the delayed pitching (ϕ < 90°) would cause the average lift to decrease and generally the averaged drag to increase, compared to the normal pitching (ϕ = 90°), overall reducing the lift/drag ratio greatly. Our experimental results also supported the findings of Lua et al. (J Exp Fluids 51:177–195, 2011) that there are two kinds of wing–wake interactions, and they can either enhance or reduce lift on the wing depending on the wing motion and the timing of the reverse stroke. Our results show that wing–wake interaction of the first kind normally has an adverse effect on lift generation when the wing is undergoing delayed pitching but has a positive effect on the lift when the wing is undergoing advanced pitching motion. When the ϕ became larger, the second kind of wing–wake interaction, that is, sliding of the leading edge vortex under the wing, will cause the concurrent fall in lift and drag.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off