Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of Phospholipase A2 Inhibitors on Bilayer Lipid Membranes

Effects of Phospholipase A2 Inhibitors on Bilayer Lipid Membranes The work examines the effect of inhibitors of cytosolic Ca2+-dependent and Ca2+-independent phospholipases A2 on bilayer lipid membranes. It was established that trifluoroperazine (TFP) and, to a lesser extent, arachidonyl trifluoromethyl ketone (AACOCF3) and palmitoyl trifluoromethyl ketone (PACOCF3) were able to permeabilize artificial lipid membranes (BLM and liposomes). It was shown that AACOCF3 lowered the temperature of phase transition of DMPC liposomes, inducing disordering of the hydrophobic region of lipid bilayer. TFP disordered membranes both in the hydrophobic region and in the region of hydrophilic heads, this being accompanied by changes in the membrane permeability: appearance of a channel-like BLM activity and leakage of sulforhodamine B from liposomes. In contrast to AACOCF3 and TFP, PACOCF3 increased membrane orderliness in the hydrophobic region (heightened the temperature of phase transition of DMPC liposomes) and in the region of lipid heads. The effectiveness of AACOCF3 and PACOCF3 as inductors of BLM and liposome permeabilization was considerably lower comparatively to TFP. As revealed by dynamic light scattering, incorporation of TFP, AACOCF3 and PACOCF3 into the membrane of liposomes resulted in the increase of the average size of particles in the suspension, presumably due to their aggregation or fusion. The paper discusses possible mechanisms of the influence of phospholipase A2 inhibitors on bilayer lipid membranes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Loading next page...
1
 
/lp/springer_journal/effects-of-phospholipase-a2-inhibitors-on-bilayer-lipid-membranes-L6WWyF2L27

References (38)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
DOI
10.1007/s00232-016-9872-7
pmid
26762382
Publisher site
See Article on Publisher Site

Abstract

The work examines the effect of inhibitors of cytosolic Ca2+-dependent and Ca2+-independent phospholipases A2 on bilayer lipid membranes. It was established that trifluoroperazine (TFP) and, to a lesser extent, arachidonyl trifluoromethyl ketone (AACOCF3) and palmitoyl trifluoromethyl ketone (PACOCF3) were able to permeabilize artificial lipid membranes (BLM and liposomes). It was shown that AACOCF3 lowered the temperature of phase transition of DMPC liposomes, inducing disordering of the hydrophobic region of lipid bilayer. TFP disordered membranes both in the hydrophobic region and in the region of hydrophilic heads, this being accompanied by changes in the membrane permeability: appearance of a channel-like BLM activity and leakage of sulforhodamine B from liposomes. In contrast to AACOCF3 and TFP, PACOCF3 increased membrane orderliness in the hydrophobic region (heightened the temperature of phase transition of DMPC liposomes) and in the region of lipid heads. The effectiveness of AACOCF3 and PACOCF3 as inductors of BLM and liposome permeabilization was considerably lower comparatively to TFP. As revealed by dynamic light scattering, incorporation of TFP, AACOCF3 and PACOCF3 into the membrane of liposomes resulted in the increase of the average size of particles in the suspension, presumably due to their aggregation or fusion. The paper discusses possible mechanisms of the influence of phospholipase A2 inhibitors on bilayer lipid membranes.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 13, 2016

There are no references for this article.