Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves

Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in... The effects of various concentrations of Pb2+ on the antioxidant enzyme activities and the ultrastructure in Potamogeton crispus leaves were studied. Peroxidase (POD) activity and malondialdehyde (MDA) content peaks were observed with an increase in Pb2+ concentration, whereas superoxide dismutase (SOD) and catalase (CAT) activities decreased firstly and then rose. Meantime, the chlorophyll content declined with increasing Pb2+ concentration. Simultaneously, high concentrations of Pb2+ aggravated ultrastructural damage to the leaf cells including swelling of chloroplasts, disruption and disappearance of chloroplast envelopes; swelling of mitochondrial cristae, deformation and vacuolation of mitochondria; condensation of chromatin, dispersion of nucleoli, and disruption of nuclear membrane. Changes in antioxidant enzyme activities and damage to fine structure are the results of lead-induced ROS accumulation. The estimated lethal concentration to P. crispus ranged from 10 to 15 mg/l lead. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves

Loading next page...
 
/lp/springer_journal/effects-of-pb2-on-the-active-oxygen-scavenging-enzyme-activities-and-RYCuFywKP2
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443707030181
Publisher site
See Article on Publisher Site

Abstract

The effects of various concentrations of Pb2+ on the antioxidant enzyme activities and the ultrastructure in Potamogeton crispus leaves were studied. Peroxidase (POD) activity and malondialdehyde (MDA) content peaks were observed with an increase in Pb2+ concentration, whereas superoxide dismutase (SOD) and catalase (CAT) activities decreased firstly and then rose. Meantime, the chlorophyll content declined with increasing Pb2+ concentration. Simultaneously, high concentrations of Pb2+ aggravated ultrastructural damage to the leaf cells including swelling of chloroplasts, disruption and disappearance of chloroplast envelopes; swelling of mitochondrial cristae, deformation and vacuolation of mitochondria; condensation of chromatin, dispersion of nucleoli, and disruption of nuclear membrane. Changes in antioxidant enzyme activities and damage to fine structure are the results of lead-induced ROS accumulation. The estimated lethal concentration to P. crispus ranged from 10 to 15 mg/l lead.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 25, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off