Effects of parasites on fish behaviour: a review and evolutionary perspective

Effects of parasites on fish behaviour: a review and evolutionary perspective Fish serve as hosts to a range of parasites that are taxonomically diverse and that exhibit a wide variety of life cycle strategies. Whereas many of these parasites are passed directly between ultimate hosts, others need to navigate through a series of intermediate hosts before reaching a host in (or on) which they can attain sexual maturity. The realisation that parasites need not have evolved to minimise their impact on hosts to be successful, and in many cases may even have a requirement for their hosts to be eaten by specific predators to ensure transmission, has renewed interest in the evolutionary basis of infection-associated host behaviour. Fishes have proved popular models for the experimental examination of such hypotheses, and parasitic infections have been demonstrated to have consequences for almost every aspect of fish behaviour. Despite a scarcity of knowledge regarding the mechanistic basis of such behaviour changes in most cases, and an even lower understanding of their ecological consequences, there can be little doubt that infection-associated behaviour changes have the potential to impact severely on the ecology of infected fishes. Changes in foraging efficiency, time budget, habitat selection, competitive ability, predator-prey relationships, swimming performance and sexual behaviour and mate choice have all been associated with – and in some cases been shown to be a result of – parasite infections, and are reviewed here in some detail. Since the behavioural consequences of infections are exposed to evolutionary selection pressures in the same way as are other phenotypic traits, few behavioural changes will be evolutionarily neutral and host behaviour changes that facilitate transmission should be expected. Despite this expectation, we have found little conclusive evidence for the Parasite Increased Trophic Transmission (PITT) hypothesis in fishes, though recent studies suggest it is likely to be an important mechanism. Additionally, since the fitness consequences of the many behavioural changes described have rarely been quantified, their evolutionary and ecological significance is effectively unknown. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Effects of parasites on fish behaviour: a review and evolutionary perspective

Loading next page...
 
/lp/springer_journal/effects-of-parasites-on-fish-behaviour-a-review-and-evolutionary-nihV585uHi
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1023/A:1016658224470
Publisher site
See Article on Publisher Site

Abstract

Fish serve as hosts to a range of parasites that are taxonomically diverse and that exhibit a wide variety of life cycle strategies. Whereas many of these parasites are passed directly between ultimate hosts, others need to navigate through a series of intermediate hosts before reaching a host in (or on) which they can attain sexual maturity. The realisation that parasites need not have evolved to minimise their impact on hosts to be successful, and in many cases may even have a requirement for their hosts to be eaten by specific predators to ensure transmission, has renewed interest in the evolutionary basis of infection-associated host behaviour. Fishes have proved popular models for the experimental examination of such hypotheses, and parasitic infections have been demonstrated to have consequences for almost every aspect of fish behaviour. Despite a scarcity of knowledge regarding the mechanistic basis of such behaviour changes in most cases, and an even lower understanding of their ecological consequences, there can be little doubt that infection-associated behaviour changes have the potential to impact severely on the ecology of infected fishes. Changes in foraging efficiency, time budget, habitat selection, competitive ability, predator-prey relationships, swimming performance and sexual behaviour and mate choice have all been associated with – and in some cases been shown to be a result of – parasite infections, and are reviewed here in some detail. Since the behavioural consequences of infections are exposed to evolutionary selection pressures in the same way as are other phenotypic traits, few behavioural changes will be evolutionarily neutral and host behaviour changes that facilitate transmission should be expected. Despite this expectation, we have found little conclusive evidence for the Parasite Increased Trophic Transmission (PITT) hypothesis in fishes, though recent studies suggest it is likely to be an important mechanism. Additionally, since the fitness consequences of the many behavioural changes described have rarely been quantified, their evolutionary and ecological significance is effectively unknown.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Oct 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off