Effects of PAR intensity and NaCl concentration on growth of Salicornia europaea plants as relevant to artificial ecological systems

Effects of PAR intensity and NaCl concentration on growth of Salicornia europaea plants as... Effects of variable levels of photosynthetically active radiation (PAR) and NaCl concentrations, typical of closed ecological life support systems, on growth of Salicornia europaea L. plants, CO2 exchange, mineral composition, and the content of malondialdehyde (MDA) and photosynthetic pigments were investigated. The plants were grown for 25 days at different salinities of nutrient Knop solution (171, 342, and 513 mM NaCl) under two PAR levels (690 and 1150 μmol/(m2 s)). At PAR of 690 μmol/(m2 s), the plant productivity did not show significant changes at increasing salinities; at 1150 μmol/(m2 s), the maximal productivity was observed at NaCl concentrations of 171 and 342 mM. The increase in NaCl concentration from 171 to 513 mM in the nutrient solution led to a substantial increase in the relative Na content in aboveground organs at PAR level of 1150 μmol/(m2 s). The MDA content in aboveground organs by the end of the growth period was independent of PAR intensity. The content of photosynthetic pigments in the assimilatory tissue decreased with the increase in salinity from 342 to 513 mM NaCl at PAR level of 1150 μmol/(m2 s) but not at the lower irradiance. The combination of 1150 μmol/(m2 s) PAR intensity with the salinity as high as 342 mM NaCl was found to be the most effective for optimal productivity of S. europaea plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of PAR intensity and NaCl concentration on growth of Salicornia europaea plants as relevant to artificial ecological systems

Loading next page...
 
/lp/springer_journal/effects-of-par-intensity-and-nacl-concentration-on-growth-of-uWGTmK8G0G
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716040154
Publisher site
See Article on Publisher Site

Abstract

Effects of variable levels of photosynthetically active radiation (PAR) and NaCl concentrations, typical of closed ecological life support systems, on growth of Salicornia europaea L. plants, CO2 exchange, mineral composition, and the content of malondialdehyde (MDA) and photosynthetic pigments were investigated. The plants were grown for 25 days at different salinities of nutrient Knop solution (171, 342, and 513 mM NaCl) under two PAR levels (690 and 1150 μmol/(m2 s)). At PAR of 690 μmol/(m2 s), the plant productivity did not show significant changes at increasing salinities; at 1150 μmol/(m2 s), the maximal productivity was observed at NaCl concentrations of 171 and 342 mM. The increase in NaCl concentration from 171 to 513 mM in the nutrient solution led to a substantial increase in the relative Na content in aboveground organs at PAR level of 1150 μmol/(m2 s). The MDA content in aboveground organs by the end of the growth period was independent of PAR intensity. The content of photosynthetic pigments in the assimilatory tissue decreased with the increase in salinity from 342 to 513 mM NaCl at PAR level of 1150 μmol/(m2 s) but not at the lower irradiance. The combination of 1150 μmol/(m2 s) PAR intensity with the salinity as high as 342 mM NaCl was found to be the most effective for optimal productivity of S. europaea plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 24, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off