Effects of NS1608 on MaxiK Channels in Smooth Muscle Cells from Urinary Bladder

Effects of NS1608 on MaxiK Channels in Smooth Muscle Cells from Urinary Bladder Using the patch-clamp technique, we have characterized membrane currents in single detrusor smooth muscle cells from rat and human urinary bladder. From the voltage- and Ca2+-dependence of the current as well as the single channel conductance we conclude that rat and human urinary bladder smooth muscle cells express MaxiK channels. In smooth muscle cells from rat urinary bladder we tested the action of NS1608 on current through these MaxiK channels. Application of 10 μm NS1608 increased the amplitude of the current and this increase could be explained by a shift in the activation voltage of the MaxiK channels ∼100 mV towards more negative potentials. Charybdotoxin as well as paxilline, well known blockers of MaxiK channels, were able to reduce current through MaxiK channels in our cell preparation. In addition, application of 10 μm NS1608 hyperpolarized the membrane potential of the investigated cells. This hyperpolarization could be antagonized by the application of paxilline. We conclude that application of NS1608 results in the opening of MaxiK channels under physiological conditions that leads to a hyperpolarization of the cells. This hyperpolarization in turn could relax urinary bladder smooth muscle cells. MaxiK channels in these cells could therefore play a role in directly controlling muscle tone by regulating the membrane potential. This opens up the possibility of MaxiK channels being targets for the treatment of urge incontinence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of NS1608 on MaxiK Channels in Smooth Muscle Cells from Urinary Bladder

Loading next page...
 
/lp/springer_journal/effects-of-ns1608-on-maxik-channels-in-smooth-muscle-cells-from-koO7TCqEIR
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001007
Publisher site
See Article on Publisher Site

Abstract

Using the patch-clamp technique, we have characterized membrane currents in single detrusor smooth muscle cells from rat and human urinary bladder. From the voltage- and Ca2+-dependence of the current as well as the single channel conductance we conclude that rat and human urinary bladder smooth muscle cells express MaxiK channels. In smooth muscle cells from rat urinary bladder we tested the action of NS1608 on current through these MaxiK channels. Application of 10 μm NS1608 increased the amplitude of the current and this increase could be explained by a shift in the activation voltage of the MaxiK channels ∼100 mV towards more negative potentials. Charybdotoxin as well as paxilline, well known blockers of MaxiK channels, were able to reduce current through MaxiK channels in our cell preparation. In addition, application of 10 μm NS1608 hyperpolarized the membrane potential of the investigated cells. This hyperpolarization could be antagonized by the application of paxilline. We conclude that application of NS1608 results in the opening of MaxiK channels under physiological conditions that leads to a hyperpolarization of the cells. This hyperpolarization in turn could relax urinary bladder smooth muscle cells. MaxiK channels in these cells could therefore play a role in directly controlling muscle tone by regulating the membrane potential. This opens up the possibility of MaxiK channels being targets for the treatment of urge incontinence.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off