Effects of nonlinear soil–structure-interaction on seismic damage of 3D buildings on cohesive and frictional soils

Effects of nonlinear soil–structure-interaction on seismic damage of 3D buildings on cohesive... The present paper investigates the impact of nonlinear soil–foundation–structure-interaction (NLSFSI) on the damage response of 3D R/C buildings supported on different soil types with varying flexibility. The main goal of the paper is to present a first approach towards the possible quantitative differentiation, with respect to fixed base conditions, on the overall damage level when NLSFSI effects are accounted for. To accomplish this purpose nine buildings with various heights and structural systems are studied. For the foundation of the buildings two different soil types are considered, namely cohesive and frictional ones. Moreover, the soil flexibility is taken into account by using two different values of the soil’s shear wave velocity. The buildings are subjected to 65 bidirectional earthquake records, for which nonlinear time history analyses are conducted. The accelerograms of each record are scaled to two different seismic intensities corresponding to certain performance levels using appropriate scaling factors. The damage state of the buildings is expressed through the maximum interstorey drift ratio. The assessment of the results revealed that the role of soil–foundation–structure-interaction (SFSI) is not necessarily beneficial. In order to assess the SFSI effects a number of parameters are important as the frequency content of the earthquake ground motion, the building’s structural system, the foundation soil flexibility as well as the earthquake intensity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Earthquake Engineering Springer Journals

Effects of nonlinear soil–structure-interaction on seismic damage of 3D buildings on cohesive and frictional soils

Loading next page...
 
/lp/springer_journal/effects-of-nonlinear-soil-structure-interaction-on-seismic-damage-of-Lab15UtepN
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Environmental Engineering/Biotechnology; Civil Engineering; Geophysics/Geodesy; Hydrogeology; Structural Geology
ISSN
1570-761X
eISSN
1573-1456
D.O.I.
10.1007/s10518-017-0108-8
Publisher site
See Article on Publisher Site

Abstract

The present paper investigates the impact of nonlinear soil–foundation–structure-interaction (NLSFSI) on the damage response of 3D R/C buildings supported on different soil types with varying flexibility. The main goal of the paper is to present a first approach towards the possible quantitative differentiation, with respect to fixed base conditions, on the overall damage level when NLSFSI effects are accounted for. To accomplish this purpose nine buildings with various heights and structural systems are studied. For the foundation of the buildings two different soil types are considered, namely cohesive and frictional ones. Moreover, the soil flexibility is taken into account by using two different values of the soil’s shear wave velocity. The buildings are subjected to 65 bidirectional earthquake records, for which nonlinear time history analyses are conducted. The accelerograms of each record are scaled to two different seismic intensities corresponding to certain performance levels using appropriate scaling factors. The damage state of the buildings is expressed through the maximum interstorey drift ratio. The assessment of the results revealed that the role of soil–foundation–structure-interaction (SFSI) is not necessarily beneficial. In order to assess the SFSI effects a number of parameters are important as the frequency content of the earthquake ground motion, the building’s structural system, the foundation soil flexibility as well as the earthquake intensity.

Journal

Bulletin of Earthquake EngineeringSpringer Journals

Published: Mar 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off