Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana

Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana Plant seeds sometimes do not germinate at elevated temperature. The thermoinhibition mechanisms of seed germination have yet not revealed. Here we describe a chemical approach to improve seed germination at high temperature. We compared the temperature response of germination between wild-type Arabidopsis thaliana and its T-DNA insertion mutant ΔAtGLB3 that lacks a functional gene encoding GLB3, a homologue of bacterial truncated Hb (trHb). Under optimal temperature conditions (e.g. 22°C), the seeds of ΔAtGLB3 and the wild type germinated at a frequency near 100%. In contrast, at 32°C the seeds of ΔAtGLB3 did not germinate while wild-type seeds retained the same high germination frequency. The germination of ΔAtGLB3 at 32°C was partially restored by supplementation with the nitric oxide-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO; cPTIO), 3-(3,4-dihydroxycinnamoyl)quinic acid, bovine serum Hb, or isoprene. The results presented in this study suggest that chemical scavengers for reactive nitrogen species potentially improve seed germination at high temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/effects-of-nitric-oxide-scavengers-on-thermoinhibition-of-seed-ZhIZzvv9Ui
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710020093
Publisher site
See Article on Publisher Site

Abstract

Plant seeds sometimes do not germinate at elevated temperature. The thermoinhibition mechanisms of seed germination have yet not revealed. Here we describe a chemical approach to improve seed germination at high temperature. We compared the temperature response of germination between wild-type Arabidopsis thaliana and its T-DNA insertion mutant ΔAtGLB3 that lacks a functional gene encoding GLB3, a homologue of bacterial truncated Hb (trHb). Under optimal temperature conditions (e.g. 22°C), the seeds of ΔAtGLB3 and the wild type germinated at a frequency near 100%. In contrast, at 32°C the seeds of ΔAtGLB3 did not germinate while wild-type seeds retained the same high germination frequency. The germination of ΔAtGLB3 at 32°C was partially restored by supplementation with the nitric oxide-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO; cPTIO), 3-(3,4-dihydroxycinnamoyl)quinic acid, bovine serum Hb, or isoprene. The results presented in this study suggest that chemical scavengers for reactive nitrogen species potentially improve seed germination at high temperature.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 25, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off