Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study

Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a... Background Rehabilitation seems to promote brain plasticity, but objective measures of efficacy are lacking and there is a limited understanding of the mechanisms underlying functional recovery. Objective To study functional and structural brain changes induced by gait rehabilitation. Methods We enrolled MS inpatients (EDSS 4.5–6.5) undergoing a 4-week neurorehabilitation. Several clinical measures were obtained, including: 2-min walk test (2MWT), dynamic gait index (DGI), Berg balance scale (BBS). Furthermore, motor-task functional MRI (fMRI) of plantar dorsiflexion, resting state fMRI, and regional diffusion tensor imaging (DTI) metrics were obtained. All the assessments were performed at baseline (T0), after the end of the rehabilitation period (T1) and 3 months later (T2). Results Twenty-nine patients were enrolled at T0, 26 at T1, and 16 completed all timepoints. At T1, there was a significant improvement of 2MWT, DGI, and BBS scores, along with a reduced extent of the widespread activation related to the motor task at the fMRI and an increased functional connectivity in the precentral and post-central gyrus, bilaterally. None of these changes were maintained at T2. Conclusions Our findings show a short-term beneficial effect of motor rehabilitation on gait performances in MS, accom - panied by brain functional reorganization in the sensory-motor network. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurology Springer Journals

Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study

Loading next page...
 
/lp/springer_journal/effects-of-motor-rehabilitation-on-mobility-and-brain-plasticity-in-0zPLzeDFfr
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Medicine & Public Health; Neurology; Neurosciences; Neuroradiology
ISSN
0340-5354
eISSN
1432-1459
D.O.I.
10.1007/s00415-018-8859-y
Publisher site
See Article on Publisher Site

Abstract

Background Rehabilitation seems to promote brain plasticity, but objective measures of efficacy are lacking and there is a limited understanding of the mechanisms underlying functional recovery. Objective To study functional and structural brain changes induced by gait rehabilitation. Methods We enrolled MS inpatients (EDSS 4.5–6.5) undergoing a 4-week neurorehabilitation. Several clinical measures were obtained, including: 2-min walk test (2MWT), dynamic gait index (DGI), Berg balance scale (BBS). Furthermore, motor-task functional MRI (fMRI) of plantar dorsiflexion, resting state fMRI, and regional diffusion tensor imaging (DTI) metrics were obtained. All the assessments were performed at baseline (T0), after the end of the rehabilitation period (T1) and 3 months later (T2). Results Twenty-nine patients were enrolled at T0, 26 at T1, and 16 completed all timepoints. At T1, there was a significant improvement of 2MWT, DGI, and BBS scores, along with a reduced extent of the widespread activation related to the motor task at the fMRI and an increased functional connectivity in the precentral and post-central gyrus, bilaterally. None of these changes were maintained at T2. Conclusions Our findings show a short-term beneficial effect of motor rehabilitation on gait performances in MS, accom - panied by brain functional reorganization in the sensory-motor network.

Journal

Journal of NeurologySpringer Journals

Published: Apr 7, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off