Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of Mode of Deformation and Extent of Reduction on Evolution of {111}-Fiber During Cold Rolling of Ni-16Cr Alloy

Effects of Mode of Deformation and Extent of Reduction on Evolution of {111}-Fiber During Cold... The high ratio of relative resolved shear stress on a twin to planar slip system results in microstructural latent hardening (some kind of overshooting) by the twin system on the primary slip planes, which leads to development of the {111}-fiber in Ni-16Cr alloy. The development of {111}-fiber starts as early as around 16 pct cold reduction in Ni-16Cr alloy and persists with maximum average intensity ranging from 35 to 40 pct additional deformation, i.e., around 50 pct cold reduction in unidirectional (U) and two-step cross (T)-rolling modes. In between 50 and 68 pct reductions in U and T modes, the fiber becomes unstable and starts disappearing. However, in multistep cross (M) rolling, the {111}-fiber formation starts late, i.e., at around 50 pct reduction, and maintains its stability up to additional deformation ranging from 35 to 40 pct, i.e., around 90 pct cold reduction. Thus, the life of {111}-fiber remains stable only within the range from 35 to 40 pct intermediate deformation during cold rolling of Ni-16Cr alloy irrespective of modes of rolling. However, the start and end of fiber stabilities depend on the modes of deformation by rolling. The maximum average intensity of {111}-fiber that can be attained in Ni-16Cr alloy is around 3.6× random in any of the deformation modes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallurgical and Materials Transactions A Springer Journals

Effects of Mode of Deformation and Extent of Reduction on Evolution of {111}-Fiber During Cold Rolling of Ni-16Cr Alloy

Loading next page...
1
 
/lp/springer_journal/effects-of-mode-of-deformation-and-extent-of-reduction-on-evolution-of-WNIFN3tn0l

References (35)

Publisher
Springer Journals
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society and ASM International
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
1073-5623
eISSN
1543-1940
DOI
10.1007/s11661-018-4611-6
Publisher site
See Article on Publisher Site

Abstract

The high ratio of relative resolved shear stress on a twin to planar slip system results in microstructural latent hardening (some kind of overshooting) by the twin system on the primary slip planes, which leads to development of the {111}-fiber in Ni-16Cr alloy. The development of {111}-fiber starts as early as around 16 pct cold reduction in Ni-16Cr alloy and persists with maximum average intensity ranging from 35 to 40 pct additional deformation, i.e., around 50 pct cold reduction in unidirectional (U) and two-step cross (T)-rolling modes. In between 50 and 68 pct reductions in U and T modes, the fiber becomes unstable and starts disappearing. However, in multistep cross (M) rolling, the {111}-fiber formation starts late, i.e., at around 50 pct reduction, and maintains its stability up to additional deformation ranging from 35 to 40 pct, i.e., around 90 pct cold reduction. Thus, the life of {111}-fiber remains stable only within the range from 35 to 40 pct intermediate deformation during cold rolling of Ni-16Cr alloy irrespective of modes of rolling. However, the start and end of fiber stabilities depend on the modes of deformation by rolling. The maximum average intensity of {111}-fiber that can be attained in Ni-16Cr alloy is around 3.6× random in any of the deformation modes.

Journal

Metallurgical and Materials Transactions ASpringer Journals

Published: Apr 16, 2018

There are no references for this article.