Effects of Micro-environmental pH of Liposome on Chemical Stability of Loaded Drug

Effects of Micro-environmental pH of Liposome on Chemical Stability of Loaded Drug Liposome is a promising carrier system for delivering bioactive molecules. However, the successful delivery of pH-sensitive molecules is still limited by the intrinsic instability of payloads in physiological environment. Herein, we developed a special liposome system that possesses an acidic micro-environment in the internal aqueous chamber to improve the chemical stability of pH-sensitive payloads. Curcumin-loaded liposomes (Cur-LPs) with varied internal pH values (pH 2.5, 5.0, or 7.4) were prepared. These Cur-LPs have similar particle size of 300 nm, comparable physical stabilities and analogous in vitro release profiles. Interestingly, the chemical stability of liposomal curcumin in 50% fetal bovine serum and its anticancer efficacy in vitro are both micro-environmental pH-dependent (Cur-LP-2.5 > Cur-LP-5.0 > Cur-LP-7.4). This serum stability still has space to be further enhanced to improve the applicability of Cur-LP. In conclusion, creating an acidic micro-environment in the internal chamber of liposome is feasible and efficient to improve the chemical stability of pH-sensitive payloads. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Research Letters Springer Journals

Effects of Micro-environmental pH of Liposome on Chemical Stability of Loaded Drug

Loading next page...
 
/lp/springer_journal/effects-of-micro-environmental-ph-of-liposome-on-chemical-stability-of-AtjRxlg0b8
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s).
Subject
Materials Science; Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine
ISSN
1931-7573
eISSN
1556-276X
D.O.I.
10.1186/s11671-017-2256-9
Publisher site
See Article on Publisher Site

Abstract

Liposome is a promising carrier system for delivering bioactive molecules. However, the successful delivery of pH-sensitive molecules is still limited by the intrinsic instability of payloads in physiological environment. Herein, we developed a special liposome system that possesses an acidic micro-environment in the internal aqueous chamber to improve the chemical stability of pH-sensitive payloads. Curcumin-loaded liposomes (Cur-LPs) with varied internal pH values (pH 2.5, 5.0, or 7.4) were prepared. These Cur-LPs have similar particle size of 300 nm, comparable physical stabilities and analogous in vitro release profiles. Interestingly, the chemical stability of liposomal curcumin in 50% fetal bovine serum and its anticancer efficacy in vitro are both micro-environmental pH-dependent (Cur-LP-2.5 > Cur-LP-5.0 > Cur-LP-7.4). This serum stability still has space to be further enhanced to improve the applicability of Cur-LP. In conclusion, creating an acidic micro-environment in the internal chamber of liposome is feasible and efficient to improve the chemical stability of pH-sensitive payloads.

Journal

Nanoscale Research LettersSpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off