Effects of Mechano-Gated Cation Channel Blockers on Xenopus Oocyte Growth and Development

Effects of Mechano-Gated Cation Channel Blockers on Xenopus Oocyte Growth and Development The putative role(s) of a mechanically gated (MG) cation channel in Xenopus oocyte growth, maturation, fertilization and embryogenesis has been examined. Using a pharmacological approach, we have tested the effects of the MG channel blockers, gadolinium, gentamicin and amiloride on the above developmental events. Our results indicate that oocyte maturation, fertilization and early embryogenesis (up to the free-swimming stage 45) can proceed normally in the presence of concentrations of agents that either completely abolish (i.e., ≥10 μm Gd3+) or partially block (i.e., 1 mm gentamicin) single MG channel activity as measured by patch-clamp recording. However, we also find that higher concentrations of Gd3+ (≥50 μm) can lead to an increased percentage (>20%) of axis-perturbed embryos compared with control (<1%) and that amiloride (0.5 mm) reduces the success of fertilization (from 100% to <50%) and increases mortality (by ∼75%) in developing embryos. Furthermore, we find that all three agents inhibit oocyte growth in vitro. However, their order of effectiveness (amiloride > gentamicin > Gd3+) is opposite to their order for blocking MG channels (Gd3+≫ gentamicin > amiloride). These discrepancies indicated that the drugs effects occur by mechanisms other than, or in addition to, MG channel block. Our results provide no compelling evidence for the idea that MG channel activity is critical for development in Xenopus. This could mean that there are other mechanisms in the oocyte that can compensate when MG channel activity is blocked or that the protein that forms the channel can undergo additional interactions that result in a function insensitive to MG channel blockers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of Mechano-Gated Cation Channel Blockers on Xenopus Oocyte Growth and Development

Loading next page...
 
/lp/springer_journal/effects-of-mechano-gated-cation-channel-blockers-on-xenopus-oocyte-0mrpkKDnS7
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900430
Publisher site
See Article on Publisher Site

Abstract

The putative role(s) of a mechanically gated (MG) cation channel in Xenopus oocyte growth, maturation, fertilization and embryogenesis has been examined. Using a pharmacological approach, we have tested the effects of the MG channel blockers, gadolinium, gentamicin and amiloride on the above developmental events. Our results indicate that oocyte maturation, fertilization and early embryogenesis (up to the free-swimming stage 45) can proceed normally in the presence of concentrations of agents that either completely abolish (i.e., ≥10 μm Gd3+) or partially block (i.e., 1 mm gentamicin) single MG channel activity as measured by patch-clamp recording. However, we also find that higher concentrations of Gd3+ (≥50 μm) can lead to an increased percentage (>20%) of axis-perturbed embryos compared with control (<1%) and that amiloride (0.5 mm) reduces the success of fertilization (from 100% to <50%) and increases mortality (by ∼75%) in developing embryos. Furthermore, we find that all three agents inhibit oocyte growth in vitro. However, their order of effectiveness (amiloride > gentamicin > Gd3+) is opposite to their order for blocking MG channels (Gd3+≫ gentamicin > amiloride). These discrepancies indicated that the drugs effects occur by mechanisms other than, or in addition to, MG channel block. Our results provide no compelling evidence for the idea that MG channel activity is critical for development in Xenopus. This could mean that there are other mechanisms in the oocyte that can compensate when MG channel activity is blocked or that the protein that forms the channel can undergo additional interactions that result in a function insensitive to MG channel blockers.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 15, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off