Effects of machining inclination angles on microgroove quality in micro ball end milling of Ti-6Al-4V

Effects of machining inclination angles on microgroove quality in micro ball end milling of... Micro end milling is a main method for the fabrication of microgroove parts which are widely applied in biology, electronics, precision machinery, and other fields. However, the machining quality of microgroove is difficult to meet requirements due to size effect, and the machined grooves easily produce high surface roughness and poor form accuracy during micro milling. In this paper, in order to investigate the effects of machining inclination angles on the performance of micro ball end milling, the micro milling experiments on Ti-6Al-4V are carried out by setting the micro ball end mill with different inclination angles in feed direction, cross-feed direction, and the combination of the two directions, respectively. The results show that the tool orientation strategy has significant influences on the quality of microgroove and can reduce the roughness and improve the form accuracy. With increase of the absolute value of inclination angle along feed direction from 0° to 45°, the surface roughness has a decreasing trend, and the chips adhesion and texture becomes inconspicuous. When inclination angle along feed direction is 30° and 45°, the combination inclination angle strategy has no obvious influences on the surface roughness with increase of inclination angle along cross-feed direction. However, the combination inclination angles strategy can reduce the maximum form deviation and improve the form accuracy of the groove. Based on the results, an optimal combination inclination angles with feed direction 45° and cross-feed direction 20° strategy is proposed to machining the microgroove. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Effects of machining inclination angles on microgroove quality in micro ball end milling of Ti-6Al-4V

Loading next page...
 
/lp/springer_journal/effects-of-machining-inclination-angles-on-microgroove-quality-in-eIhYITmH0o
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0305-2
Publisher site
See Article on Publisher Site

Abstract

Micro end milling is a main method for the fabrication of microgroove parts which are widely applied in biology, electronics, precision machinery, and other fields. However, the machining quality of microgroove is difficult to meet requirements due to size effect, and the machined grooves easily produce high surface roughness and poor form accuracy during micro milling. In this paper, in order to investigate the effects of machining inclination angles on the performance of micro ball end milling, the micro milling experiments on Ti-6Al-4V are carried out by setting the micro ball end mill with different inclination angles in feed direction, cross-feed direction, and the combination of the two directions, respectively. The results show that the tool orientation strategy has significant influences on the quality of microgroove and can reduce the roughness and improve the form accuracy. With increase of the absolute value of inclination angle along feed direction from 0° to 45°, the surface roughness has a decreasing trend, and the chips adhesion and texture becomes inconspicuous. When inclination angle along feed direction is 30° and 45°, the combination inclination angle strategy has no obvious influences on the surface roughness with increase of inclination angle along cross-feed direction. However, the combination inclination angles strategy can reduce the maximum form deviation and improve the form accuracy of the groove. Based on the results, an optimal combination inclination angles with feed direction 45° and cross-feed direction 20° strategy is proposed to machining the microgroove.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off