Effects of Lipophilic Ions on Outer Hair Cell Membrane Capacitance and Motility

Effects of Lipophilic Ions on Outer Hair Cell Membrane Capacitance and Motility The outer hair cell (OHC) from the mammalian organ of Corti possesses a bell-shaped voltage-dependent capacitance function. The nonlinear capacitance reflects the activity of membrane bound voltage sensors associated with membrane motors that control OHC length. We have studied the effects of the lipophilic ions, tetraphenylborate (TPB−) and tetraphenylphosphonium (TPP+), on nonlinear capacitance and motility of isolated guinea-pig OHCs. Effects on supporting cells were also investigated. TPB− produced an increase in the peak capacitance (Cm pk ) and shifted the voltage at peak capacitance (V pkCm ) to hyperpolarized levels. Washout reversed the effects. Perfusion of 0.4 μm TPB− caused an average increase in Cm pk of 16.3 pF and V pkCm shift of 13.6 mV. TPP+, on the other hand, only shifted V pkCm in the positive direction, with no change in Cm pk . The contributions from native OHC and TPB−-induced capacitance were dissected by a double Boltzmann fitting paradigm, and by blocking native OHC capacitance. While mechanical response studies indicate little effect of TPB− on the motility of OHCs which were in normal condition or treated with salicylate or gadolinium, the voltage at maximum mechanical gain (V δ Lmax ) was shifted in correspondence with native V pkCm , and both changed in a concentration-dependent manner. Both TPB−-induced changes in Cm pk and V pkCm were affected by voltage prepulses and intracellular turgor pressure. TPB− induced a voltage-dependent capacitance in supporting cells whose characteristics were similar to those of the OHC, but no indication of mechanical responses was noted. Our results indicate that OHC mechanical responses are not simply related to quantity of nonspecific nonlinear charge moved within the membrane, but to the effects of motility voltage-sensor charge movement functionally coupled to a mechanical effector. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of Lipophilic Ions on Outer Hair Cell Membrane Capacitance and Motility

Loading next page...
 
/lp/springer_journal/effects-of-lipophilic-ions-on-outer-hair-cell-membrane-capacitance-and-4W3rhcXJ8V
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900453
Publisher site
See Article on Publisher Site

Abstract

The outer hair cell (OHC) from the mammalian organ of Corti possesses a bell-shaped voltage-dependent capacitance function. The nonlinear capacitance reflects the activity of membrane bound voltage sensors associated with membrane motors that control OHC length. We have studied the effects of the lipophilic ions, tetraphenylborate (TPB−) and tetraphenylphosphonium (TPP+), on nonlinear capacitance and motility of isolated guinea-pig OHCs. Effects on supporting cells were also investigated. TPB− produced an increase in the peak capacitance (Cm pk ) and shifted the voltage at peak capacitance (V pkCm ) to hyperpolarized levels. Washout reversed the effects. Perfusion of 0.4 μm TPB− caused an average increase in Cm pk of 16.3 pF and V pkCm shift of 13.6 mV. TPP+, on the other hand, only shifted V pkCm in the positive direction, with no change in Cm pk . The contributions from native OHC and TPB−-induced capacitance were dissected by a double Boltzmann fitting paradigm, and by blocking native OHC capacitance. While mechanical response studies indicate little effect of TPB− on the motility of OHCs which were in normal condition or treated with salicylate or gadolinium, the voltage at maximum mechanical gain (V δ Lmax ) was shifted in correspondence with native V pkCm , and both changed in a concentration-dependent manner. Both TPB−-induced changes in Cm pk and V pkCm were affected by voltage prepulses and intracellular turgor pressure. TPB− induced a voltage-dependent capacitance in supporting cells whose characteristics were similar to those of the OHC, but no indication of mechanical responses was noted. Our results indicate that OHC mechanical responses are not simply related to quantity of nonspecific nonlinear charge moved within the membrane, but to the effects of motility voltage-sensor charge movement functionally coupled to a mechanical effector.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 15, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off