Effects of Lipids on ENaC Activity in Cultured Mouse Cortical Collecting Duct Cells

Effects of Lipids on ENaC Activity in Cultured Mouse Cortical Collecting Duct Cells Direct effects on epithelial Na+ channels (ENaC) activity by lipids, e.g., arachidonic acid (AA), eicosatetraynoic acid (ETYA), linoleic acid (LA), stearic acid (SA), hydroxyeicosatetraenoic acid (HETE), 11,12–epoxyeicosatrienoic acid (EET), (PGF2), and (PGE2), in cultured mouse cortical collecting duct (M1) cells were clarified by using single-channel recordings in this study. In a cell-attached recording, a bath application of 10 μM AA significantly reduced the ENaC open probability (NPo), whereas 10 μM ETYA or 5 μM LA only induced a slight inhibition. The inside-out recording as a standard protocol was thereafter performed to examine effects of these lipids on ENaC activity. Within 10 min after the formation of the inside-out configuration, the NPo of ENaC in cultured mouse cortical collecting duct (M1) cells remained relatively constant. Application of ETYA or LA or SA exhibited a similar inhibition on the channel NPo when applied to the extracellular side, suggesting that fatty acids could exert a nonspecific inhibition on ENaC activity. 11,12-EET, a metabolite of AA via the cytochrome P450 epoxygenase pathway, significantly inhibited the ENaC NPo, whereas 20-HETE, a metabolite of AA via the hydroxylase pathway, only caused a small inhibition of the ENaC NPo, to a similar degree as that seen with ETYA and LA. However, both PGE2 and PGF2α significantly enhanced the ENaC NPo. These results suggest that fatty acids exert a nonspecific effect on ENaC activity due to the interaction between the channel proximity and the lipid. The opposite effects of 11,12-EET and prostaglandin (PG) implicate different mechanisms in regulation of ENaC activity by activation of epoxygenase and cyclooxygenase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of Lipids on ENaC Activity in Cultured Mouse Cortical Collecting Duct Cells

Loading next page...
 
/lp/springer_journal/effects-of-lipids-on-enac-activity-in-cultured-mouse-cortical-zOyMFP5CGx
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9145-1
Publisher site
See Article on Publisher Site

Abstract

Direct effects on epithelial Na+ channels (ENaC) activity by lipids, e.g., arachidonic acid (AA), eicosatetraynoic acid (ETYA), linoleic acid (LA), stearic acid (SA), hydroxyeicosatetraenoic acid (HETE), 11,12–epoxyeicosatrienoic acid (EET), (PGF2), and (PGE2), in cultured mouse cortical collecting duct (M1) cells were clarified by using single-channel recordings in this study. In a cell-attached recording, a bath application of 10 μM AA significantly reduced the ENaC open probability (NPo), whereas 10 μM ETYA or 5 μM LA only induced a slight inhibition. The inside-out recording as a standard protocol was thereafter performed to examine effects of these lipids on ENaC activity. Within 10 min after the formation of the inside-out configuration, the NPo of ENaC in cultured mouse cortical collecting duct (M1) cells remained relatively constant. Application of ETYA or LA or SA exhibited a similar inhibition on the channel NPo when applied to the extracellular side, suggesting that fatty acids could exert a nonspecific inhibition on ENaC activity. 11,12-EET, a metabolite of AA via the cytochrome P450 epoxygenase pathway, significantly inhibited the ENaC NPo, whereas 20-HETE, a metabolite of AA via the hydroxylase pathway, only caused a small inhibition of the ENaC NPo, to a similar degree as that seen with ETYA and LA. However, both PGE2 and PGF2α significantly enhanced the ENaC NPo. These results suggest that fatty acids exert a nonspecific effect on ENaC activity due to the interaction between the channel proximity and the lipid. The opposite effects of 11,12-EET and prostaglandin (PG) implicate different mechanisms in regulation of ENaC activity by activation of epoxygenase and cyclooxygenase.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 3, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off