Effects of Light Spectral Quality on Morphogenesis and Source–Sink Relations in Radish Plants

Effects of Light Spectral Quality on Morphogenesis and Source–Sink Relations in Radish Plants The accumulation of dry matter and the content of major phytohormones in the aboveground and underground plant parts, as well as light curves and the diurnal course of photosynthesis in the leaves were studied in radish (Raphanus sativusL.) plants of different ages that were grown under red (RL) or blue (BL) light. As seen from the rapid increase in plant biomass, the development of storage organs (hypocotyl or tap root) started on the 14th day after the emergence of seedling of the BL plants and on the 21st day for the RL plants. Conversely, RL stimulated biomass accumulation in the aboveground parts (petioles and stems) already in the early stages of plant development. Light spectral quality only slightly affected the activity and the diurnal course of photosynthesis. The GA content was ten times higher in the aboveground parts of the RL plants than those of the BL plants. The hypocotyl of the BL plants contained much higher amounts of cytokinins and IAA than that of the RL plants. The specific responses of the source–sink relations to the light quality were related to the distribution of various phytohormones between the aboveground and underground parts of the plants: RL increased the content of gibberellins (GA) in the aboveground parts of plants, thus increasing their sink activity, whereas BL stimulated the synthesis of cytokinins and IAA in the hypocotyl and enhanced its development. Light quality-specific morphogenetic responses were reversed when plants were treated with exogenous GA or paclobutrazol, an inhibitor of GA synthesis. The treatment of the BL plants with exogenous GA stimulated petiole and hypocotyl elongation and induced stem formation. The treatment of the BL plants with paclobutrazol led to shortened petioles, the flattening of the storage organ, and the disappearance of the stem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of Light Spectral Quality on Morphogenesis and Source–Sink Relations in Radish Plants

Loading next page...
 
/lp/springer_journal/effects-of-light-spectral-quality-on-morphogenesis-and-source-sink-UBeWAaQRZ5
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1016725207990
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial