Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids

Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes... During the last decades opioid peptides, like enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are subject to extensive studies due to their antinociceptive action in organism. According to the membrane catalysis theory, in order to adopt a proper conformation for binding to their receptors, opioid peptides interact with the lipid phase of the membrane receptor surrounding. With this regard, the aim of the present work was to study the effects of synthetic leucine-enkephalin and leucine-enkephalinamide on surface characteristics and morphology of lipid monolayers, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol alone and with their mixtures. The lipids were chosen to represent a model of a membrane raft, since it is known that G-protein-coupled receptors, including opioid receptors, are located preferably in membrane rafts. By using Langmuir’s monolayer method, the change in surface pressure of the model membranes before and after the addition of the synthetic enkephalins was studied, and the compressional moduli of the lipids and lipid–peptides monolayers were determined. In addition, by Brewster angle microscopy, the surface morphology of the lipid monolayers alone and after the injection of both enkephalins was monitored. Our results showed that both leucine-enkephalins affected the lipid monolayers surface characteristics, and led to an increase in surface density of the mixed surface lipids/enkephalins films at loose lipid packing. This effect was more pronounced for the enkephalinamide, suggesting a different mechanism of interaction for the amidated enkephalin with the lipid phase, as compared to leucine-enkephalin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids

Loading next page...
 
/lp/springer_journal/effects-of-leucin-enkephalins-on-surface-characteristics-and-v6kkLfMmUD
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9862-1
Publisher site
See Article on Publisher Site

Abstract

During the last decades opioid peptides, like enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are subject to extensive studies due to their antinociceptive action in organism. According to the membrane catalysis theory, in order to adopt a proper conformation for binding to their receptors, opioid peptides interact with the lipid phase of the membrane receptor surrounding. With this regard, the aim of the present work was to study the effects of synthetic leucine-enkephalin and leucine-enkephalinamide on surface characteristics and morphology of lipid monolayers, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol alone and with their mixtures. The lipids were chosen to represent a model of a membrane raft, since it is known that G-protein-coupled receptors, including opioid receptors, are located preferably in membrane rafts. By using Langmuir’s monolayer method, the change in surface pressure of the model membranes before and after the addition of the synthetic enkephalins was studied, and the compressional moduli of the lipids and lipid–peptides monolayers were determined. In addition, by Brewster angle microscopy, the surface morphology of the lipid monolayers alone and after the injection of both enkephalins was monitored. Our results showed that both leucine-enkephalins affected the lipid monolayers surface characteristics, and led to an increase in surface density of the mixed surface lipids/enkephalins films at loose lipid packing. This effect was more pronounced for the enkephalinamide, suggesting a different mechanism of interaction for the amidated enkephalin with the lipid phase, as compared to leucine-enkephalin.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 12, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off