Effects of indigo carmine concentration on the morphology and microwave absorbing behavior of PPy prepared by template synthesis

Effects of indigo carmine concentration on the morphology and microwave absorbing behavior of PPy... In the study, a series of polypyrrole (PPy) samples were prepared by a method of template synthesis at different indigo carmine (IC) concentrations while keeping the amount of pyrrole and FeCl3 as well as the reaction conditions unchanged. Effects of IC concentration (MIC) on the morphology, conductivity and microwave absorbing behavior of the obtained PPy products were investigated. The results showed that the morphology of PPy transformed from granular flocking to rods and then to spiral rods as MIC increased from 0.05 to 7.50 mM, and the morphology transformation mechanism of PPy was attributed to the structural transformation of IC micelles caused by the change of MIC. The conductivity of PPy was also found to be influenced by MIC. Further investigation indicated that the spiral rod-shaped PPy (S-5) showed obviously superior microwave absorbing behavior compared with that of the granular flocking shaped PPy or that of the rod-shaped PPy, which was attributed to the benefits of its spiral structure and the comparably higher dielectric loss resulted from its lower conductivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Effects of indigo carmine concentration on the morphology and microwave absorbing behavior of PPy prepared by template synthesis

Loading next page...
 
/lp/springer_journal/effects-of-indigo-carmine-concentration-on-the-morphology-and-zPk0AUEv0J
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1702-5
Publisher site
See Article on Publisher Site

Abstract

In the study, a series of polypyrrole (PPy) samples were prepared by a method of template synthesis at different indigo carmine (IC) concentrations while keeping the amount of pyrrole and FeCl3 as well as the reaction conditions unchanged. Effects of IC concentration (MIC) on the morphology, conductivity and microwave absorbing behavior of the obtained PPy products were investigated. The results showed that the morphology of PPy transformed from granular flocking to rods and then to spiral rods as MIC increased from 0.05 to 7.50 mM, and the morphology transformation mechanism of PPy was attributed to the structural transformation of IC micelles caused by the change of MIC. The conductivity of PPy was also found to be influenced by MIC. Further investigation indicated that the spiral rod-shaped PPy (S-5) showed obviously superior microwave absorbing behavior compared with that of the granular flocking shaped PPy or that of the rod-shaped PPy, which was attributed to the benefits of its spiral structure and the comparably higher dielectric loss resulted from its lower conductivity.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off