Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans

Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans Purpose To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon mor- phological and mechanical properties) during a 12-week high-load plantar flexion training program. Methods Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a func- tion of plantar flexion torque during voluntary plantar flexion. Tendon force–elongation and stress–strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks. Results At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young’s modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young’s modulus (87% increase), and at post-8 in CSA (15% increase). Conclusions Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties. Keywords http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Applied Physiology Springer Journals

Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans

Loading next page...
 
/lp/springer_journal/effects-of-high-loading-by-eccentric-triceps-surae-training-on-sHvKa5Ub0v
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Human Physiology; Occupational Medicine/Industrial Medicine; Sports Medicine
ISSN
1439-6319
eISSN
1439-6327
D.O.I.
10.1007/s00421-018-3904-1
Publisher site
See Article on Publisher Site

Abstract

Purpose To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon mor- phological and mechanical properties) during a 12-week high-load plantar flexion training program. Methods Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a func- tion of plantar flexion torque during voluntary plantar flexion. Tendon force–elongation and stress–strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks. Results At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young’s modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young’s modulus (87% increase), and at post-8 in CSA (15% increase). Conclusions Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties. Keywords

Journal

European Journal of Applied PhysiologySpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off