Effects of heat pretreatment of wet-milled corn germ on the physicochemical properties of oil

Effects of heat pretreatment of wet-milled corn germ on the physicochemical properties of oil Corn germ oil is removed from the milled germ using a conditioning (heating) process, followed by mechanical expelling and/or hexane extraction. In this study, the effect of pretreatment by oven roasting (OR) and microwave (MW) radiation on wet-milled corn germ was investigated. Three OR temperatures (125, 150, and 175 °C) were used with 60 min exposure, and MW pretreatments were established by combining two powers (440 and 800 W) and three pretreatment times (4, 6, and 8 min). The levels of red value, 1,3-diacylglycerol, total diacylglycerol, free fatty acid, and oleic acid increased substantially, while those of triacylglycerol (TAG), linoleic, and linolenic acid decreased significantly following OR. There were no significant differences in TAG compositions following OR and MW treatments. Both heat pretreatments significantly increased the total tocopherol content. δ-Tocopherol showed minimal changes, while β-tocopherol progressively increased after the heat treatments. No significant differences in phytosterols levels were observed among most samples. The MW radiation Proper roasting temperatures or MW radiation times could enrich the content of individual tocopherols and phytosterols, and improve the oxidative stability of oil. The MW radiation tends to be more applicable and sustainable for oil industry to improve the quality of corn germ oil. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Science and Technology Springer Journals

Effects of heat pretreatment of wet-milled corn germ on the physicochemical properties of oil

Loading next page...
 
/lp/springer_journal/effects-of-heat-pretreatment-of-wet-milled-corn-germ-on-the-gU320hzmqk
Publisher
Springer Journals
Copyright
Copyright © 2018 by Association of Food Scientists & Technologists (India)
Subject
Chemistry; Food Science; Nutrition; Chemistry/Food Science, general
ISSN
0022-1155
eISSN
0975-8402
D.O.I.
10.1007/s13197-018-3243-6
Publisher site
See Article on Publisher Site

Abstract

Corn germ oil is removed from the milled germ using a conditioning (heating) process, followed by mechanical expelling and/or hexane extraction. In this study, the effect of pretreatment by oven roasting (OR) and microwave (MW) radiation on wet-milled corn germ was investigated. Three OR temperatures (125, 150, and 175 °C) were used with 60 min exposure, and MW pretreatments were established by combining two powers (440 and 800 W) and three pretreatment times (4, 6, and 8 min). The levels of red value, 1,3-diacylglycerol, total diacylglycerol, free fatty acid, and oleic acid increased substantially, while those of triacylglycerol (TAG), linoleic, and linolenic acid decreased significantly following OR. There were no significant differences in TAG compositions following OR and MW treatments. Both heat pretreatments significantly increased the total tocopherol content. δ-Tocopherol showed minimal changes, while β-tocopherol progressively increased after the heat treatments. No significant differences in phytosterols levels were observed among most samples. The MW radiation Proper roasting temperatures or MW radiation times could enrich the content of individual tocopherols and phytosterols, and improve the oxidative stability of oil. The MW radiation tends to be more applicable and sustainable for oil industry to improve the quality of corn germ oil.

Journal

Journal of Food Science and TechnologySpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off