Effects of geometry factors on microvortices evolution in confined square microcavities

Effects of geometry factors on microvortices evolution in confined square microcavities Recently, microcavities have become a central feature of diverse microfluidic devices for many biological applications. Thus, the flow and transport phenomena in microcavities characterized by microvortices have received increasing research attention. It is important to understand thoroughly the geometry factors on the flow behaviors in microcavities. In an effort to provide a design guideline for optimizing the microcavity configuration and better utilizing microvortices for different applications, we investigated quantitatively the liquid flow characteristics in different square microcavities located on one side of a main straight microchannel by using both microparticle image velocimetry (micro-PIV) and numerical simulation. The influences of the inlet Reynolds numbers (with relatively wider values Re = 1–400) and the hydraulic diameter of the main microchannel (D H = 100, 133 μm) on the evolution of microvortices in different square microcavities (100, 200, 400 and 800 μm) were studied. The evolution and characteristic of the microvortices were investigated in detail. Moreover, the critical Reynolds numbers for the emergence of microvortices and the transformation of flow patterns in different microcavities were determined. The results will provide a useful guideline for the design of microcavity-featured microfluidic devices and their applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microfluids and Nanofluids Springer Journals

Effects of geometry factors on microvortices evolution in confined square microcavities

Loading next page...
 
/lp/springer_journal/effects-of-geometry-factors-on-microvortices-evolution-in-confined-wH4ajnKLVK
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Engineering Fluid Dynamics; Biomedical Engineering; Analytical Chemistry; Nanotechnology and Microengineering
ISSN
1613-4982
eISSN
1613-4990
D.O.I.
10.1007/s10404-018-2056-2
Publisher site
See Article on Publisher Site

Abstract

Recently, microcavities have become a central feature of diverse microfluidic devices for many biological applications. Thus, the flow and transport phenomena in microcavities characterized by microvortices have received increasing research attention. It is important to understand thoroughly the geometry factors on the flow behaviors in microcavities. In an effort to provide a design guideline for optimizing the microcavity configuration and better utilizing microvortices for different applications, we investigated quantitatively the liquid flow characteristics in different square microcavities located on one side of a main straight microchannel by using both microparticle image velocimetry (micro-PIV) and numerical simulation. The influences of the inlet Reynolds numbers (with relatively wider values Re = 1–400) and the hydraulic diameter of the main microchannel (D H = 100, 133 μm) on the evolution of microvortices in different square microcavities (100, 200, 400 and 800 μm) were studied. The evolution and characteristic of the microvortices were investigated in detail. Moreover, the critical Reynolds numbers for the emergence of microvortices and the transformation of flow patterns in different microcavities were determined. The results will provide a useful guideline for the design of microcavity-featured microfluidic devices and their applications.

Journal

Microfluids and NanofluidsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off