Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of geometry factors on microvortices evolution in confined square microcavities

Effects of geometry factors on microvortices evolution in confined square microcavities Recently, microcavities have become a central feature of diverse microfluidic devices for many biological applications. Thus, the flow and transport phenomena in microcavities characterized by microvortices have received increasing research attention. It is important to understand thoroughly the geometry factors on the flow behaviors in microcavities. In an effort to provide a design guideline for optimizing the microcavity configuration and better utilizing microvortices for different applications, we investigated quantitatively the liquid flow characteristics in different square microcavities located on one side of a main straight microchannel by using both microparticle image velocimetry (micro-PIV) and numerical simulation. The influences of the inlet Reynolds numbers (with relatively wider values Re = 1–400) and the hydraulic diameter of the main microchannel (D H = 100, 133 μm) on the evolution of microvortices in different square microcavities (100, 200, 400 and 800 μm) were studied. The evolution and characteristic of the microvortices were investigated in detail. Moreover, the critical Reynolds numbers for the emergence of microvortices and the transformation of flow patterns in different microcavities were determined. The results will provide a useful guideline for the design of microcavity-featured microfluidic devices and their applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microfluids and Nanofluids Springer Journals

Effects of geometry factors on microvortices evolution in confined square microcavities

Loading next page...
 
/lp/springer_journal/effects-of-geometry-factors-on-microvortices-evolution-in-confined-wH4ajnKLVK

References (71)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Engineering Fluid Dynamics; Biomedical Engineering; Analytical Chemistry; Nanotechnology and Microengineering
ISSN
1613-4982
eISSN
1613-4990
DOI
10.1007/s10404-018-2056-2
Publisher site
See Article on Publisher Site

Abstract

Recently, microcavities have become a central feature of diverse microfluidic devices for many biological applications. Thus, the flow and transport phenomena in microcavities characterized by microvortices have received increasing research attention. It is important to understand thoroughly the geometry factors on the flow behaviors in microcavities. In an effort to provide a design guideline for optimizing the microcavity configuration and better utilizing microvortices for different applications, we investigated quantitatively the liquid flow characteristics in different square microcavities located on one side of a main straight microchannel by using both microparticle image velocimetry (micro-PIV) and numerical simulation. The influences of the inlet Reynolds numbers (with relatively wider values Re = 1–400) and the hydraulic diameter of the main microchannel (D H = 100, 133 μm) on the evolution of microvortices in different square microcavities (100, 200, 400 and 800 μm) were studied. The evolution and characteristic of the microvortices were investigated in detail. Moreover, the critical Reynolds numbers for the emergence of microvortices and the transformation of flow patterns in different microcavities were determined. The results will provide a useful guideline for the design of microcavity-featured microfluidic devices and their applications.

Journal

Microfluids and NanofluidsSpringer Journals

Published: Mar 13, 2018

There are no references for this article.