Effects of Fusicoccin on the Early Stages of Sorghum Growth at High NaCl Concentrations

Effects of Fusicoccin on the Early Stages of Sorghum Growth at High NaCl Concentrations The effects of fusicoccin (FC) on the early growth processes in sorghum (Sorghum vulgare M.) seeds germinated in water and in 0.1 M or 0.2 M NaCl solutions were investigated. We studied the rate of seed imbibition, the onset of radicle protrusion, the occurrence of the first mitoses, the mitotic index, the distribution of cells according to the phases of the cell cycle, as well as the length and weight of roots. Seed imbibition was considerably accelerated by treating them with 5 × 10−6 M FC for 1 h. In these FC-treated seeds placed on NaCl solutions, FC stimulated water influx into seeds, radicle protrusion, and occurrence of the first mitoses. FC pretreatment did not affect substantially the distribution of meristematic cells according to the periods of the cell cycle after 72 h of seed germination on water or 0.1 M NaCl. Root growth was inhibited by 0.1 M NaCl, but it was partially recovered in the presence of FC. 0.2 M NaCl caused a decrease in the mitotic index and in the number of cells in the S phase, an accumulation of cells in the G2 period and in the prophase, as well as a considerable inhibition of root growth. FC pretreatment of seeds subsequently germinated on 0.2 M NaCl resulted in an increase in the number of cells in the G1 period, in the mitotic index, and in the root-growth rate. FC virtually did not affect the growth of sorghum in the absence of salt. Pretreatment of seeds with FC followed by salinization resulted in an increase in the water content in seeds. It is suggested that a FC-induced increase in the water content of seeds accelerated metabolic processes in seeds germinating on NaCl solutions, thus regulating ionic homeostasis and thereby stimulating the initial growth processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of Fusicoccin on the Early Stages of Sorghum Growth at High NaCl Concentrations

Loading next page...
 
/lp/springer_journal/effects-of-fusicoccin-on-the-early-stages-of-sorghum-growth-at-high-0OlkzWXuEB
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0050-5
Publisher site
See Article on Publisher Site

Abstract

The effects of fusicoccin (FC) on the early growth processes in sorghum (Sorghum vulgare M.) seeds germinated in water and in 0.1 M or 0.2 M NaCl solutions were investigated. We studied the rate of seed imbibition, the onset of radicle protrusion, the occurrence of the first mitoses, the mitotic index, the distribution of cells according to the phases of the cell cycle, as well as the length and weight of roots. Seed imbibition was considerably accelerated by treating them with 5 × 10−6 M FC for 1 h. In these FC-treated seeds placed on NaCl solutions, FC stimulated water influx into seeds, radicle protrusion, and occurrence of the first mitoses. FC pretreatment did not affect substantially the distribution of meristematic cells according to the periods of the cell cycle after 72 h of seed germination on water or 0.1 M NaCl. Root growth was inhibited by 0.1 M NaCl, but it was partially recovered in the presence of FC. 0.2 M NaCl caused a decrease in the mitotic index and in the number of cells in the S phase, an accumulation of cells in the G2 period and in the prophase, as well as a considerable inhibition of root growth. FC pretreatment of seeds subsequently germinated on 0.2 M NaCl resulted in an increase in the number of cells in the G1 period, in the mitotic index, and in the root-growth rate. FC virtually did not affect the growth of sorghum in the absence of salt. Pretreatment of seeds with FC followed by salinization resulted in an increase in the water content in seeds. It is suggested that a FC-induced increase in the water content of seeds accelerated metabolic processes in seeds germinating on NaCl solutions, thus regulating ionic homeostasis and thereby stimulating the initial growth processes.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 19, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off