Effects of Free Radicals on Partial Reactions of the Na,K-ATPase

Effects of Free Radicals on Partial Reactions of the Na,K-ATPase The function of the Na,K-ATPase is known to be considerably impaired in the presence of free radicals such as OH•. While previous experiments were largely based on the loss of enzymatic activity of the protein, this is the first communication dealing with partial reactions of the pump cycle in the presence of free radicals produced by water radiolysis. Three different system states, which are directly involved in ion transfer catalyzed by the enzyme, showed similar sensitivity to free radical action. This is indicated by largely identical D37-doses of the decay of the reaction amplitudes investigated. The decrease in the efficiency of the enzyme functions was largely due to a lethal damage of pump molecules. A kinetic analysis of the ATP-induced conformational transition E1→ E2 revealed, however, that a minor component of the inactivation is due to a reduction of the transition rate constant. The decrease of the enzymatic activity could be simulated by the decay of the rate-limiting conformational transition. This finding indicates the conservation of a close coupling between ATP-hydrolysis and sodium translocation process throughout free-radical induced inactivation. As a result of the tight coupling, enzyme modification at different system states leads to similar functional consequences for the protein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of Free Radicals on Partial Reactions of the Na,K-ATPase

Loading next page...
 
/lp/springer_journal/effects-of-free-radicals-on-partial-reactions-of-the-na-k-atpase-qhoPwa0c02
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900188
Publisher site
See Article on Publisher Site

Abstract

The function of the Na,K-ATPase is known to be considerably impaired in the presence of free radicals such as OH•. While previous experiments were largely based on the loss of enzymatic activity of the protein, this is the first communication dealing with partial reactions of the pump cycle in the presence of free radicals produced by water radiolysis. Three different system states, which are directly involved in ion transfer catalyzed by the enzyme, showed similar sensitivity to free radical action. This is indicated by largely identical D37-doses of the decay of the reaction amplitudes investigated. The decrease in the efficiency of the enzyme functions was largely due to a lethal damage of pump molecules. A kinetic analysis of the ATP-induced conformational transition E1→ E2 revealed, however, that a minor component of the inactivation is due to a reduction of the transition rate constant. The decrease of the enzymatic activity could be simulated by the decay of the rate-limiting conformational transition. This finding indicates the conservation of a close coupling between ATP-hydrolysis and sodium translocation process throughout free-radical induced inactivation. As a result of the tight coupling, enzyme modification at different system states leads to similar functional consequences for the protein.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off