Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of exogenous polyamines on nitrate tolerance in cucumber

Effects of exogenous polyamines on nitrate tolerance in cucumber Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major polyamines (PAs) in plant, which are not only involved in the regulation of plant developmental and physiological processes, but also play key roles in modulating the defense response of plants to diverse environmental stresses. In this study, Cucumis sativus L. seedlings were cultivated in nutrient solution and sprayed with three kinds of PAs (Put, Spd, and Spm). The effects of PAs were investigated on excess nitrate stress tolerance of C. sativus by measuring growth and nitrogen (N) metabolism parameters. The contents of NO 3- − N, NH 4- + N, proline and soluble protein in leaves were increased; while plant height, leaf area, shoot fresh and dry weight, root fresh weight were decreased under 140 mM NO 3 − treatment for 7 d. In addition, the activities of nitrate reductase (NR), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) were significantly inhibited under 140 mM NO 3 − treatment for 7 d. With foliar treatment by 1 mM Spd or Spm under stress treatment, the contents of Spm, Put, and Spd in leaves increased significantly, except that Spm content decreased under Spd treatment. The activities of NR, glutamine synthetase (GS), GOGAT and GDH and plant height, leaf area, shoot fresh and dry weights were significantly increased. The contents of proline and soluble protein in leaves were significantly enhanced. In contrast, the accumulation of NO 3- − N and NH 4- + N were significantly decreased. However, there were minor differences in activities of N metabolism enzymes and the content of osmotic adjustment substances under 1 mM Put treatment. These findings suggest that 1 mM exogenous Spm or Spd could enhance the capacity of N metabolism, promote growth and increase resistance to high concentrations of NO 3 − . The ameliorating effect of Spd was the best, and that of Put the worst. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of exogenous polyamines on nitrate tolerance in cucumber

Loading next page...
1
 
/lp/springer_journal/effects-of-exogenous-polyamines-on-nitrate-tolerance-in-cucumber-W74djRHZFD

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
DOI
10.1134/S1021443716040166
Publisher site
See Article on Publisher Site

Abstract

Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major polyamines (PAs) in plant, which are not only involved in the regulation of plant developmental and physiological processes, but also play key roles in modulating the defense response of plants to diverse environmental stresses. In this study, Cucumis sativus L. seedlings were cultivated in nutrient solution and sprayed with three kinds of PAs (Put, Spd, and Spm). The effects of PAs were investigated on excess nitrate stress tolerance of C. sativus by measuring growth and nitrogen (N) metabolism parameters. The contents of NO 3- − N, NH 4- + N, proline and soluble protein in leaves were increased; while plant height, leaf area, shoot fresh and dry weight, root fresh weight were decreased under 140 mM NO 3 − treatment for 7 d. In addition, the activities of nitrate reductase (NR), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) were significantly inhibited under 140 mM NO 3 − treatment for 7 d. With foliar treatment by 1 mM Spd or Spm under stress treatment, the contents of Spm, Put, and Spd in leaves increased significantly, except that Spm content decreased under Spd treatment. The activities of NR, glutamine synthetase (GS), GOGAT and GDH and plant height, leaf area, shoot fresh and dry weights were significantly increased. The contents of proline and soluble protein in leaves were significantly enhanced. In contrast, the accumulation of NO 3- − N and NH 4- + N were significantly decreased. However, there were minor differences in activities of N metabolism enzymes and the content of osmotic adjustment substances under 1 mM Put treatment. These findings suggest that 1 mM exogenous Spm or Spd could enhance the capacity of N metabolism, promote growth and increase resistance to high concentrations of NO 3 − . The ameliorating effect of Spd was the best, and that of Put the worst.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 24, 2016

There are no references for this article.