Effects of endogenous hormones on variation of shoot branching in a variety of non-heading Chinese cabbage and related gene expression

Effects of endogenous hormones on variation of shoot branching in a variety of non-heading... Shoot branching (tillering) primarily determines plant shoot architecture and has been studied in many plants. Shoot branching is an important trait in non-heading Chinese cabbage (Brassica rapa ssp. chinensis Makino). The B. rapa ssp. chinensis var. multiceps exhibits unique and multiple shoot branching characteristics. Here, we analyzed the variation in shoot branching between ‘Maertou,’ with multiple shoot branching, and ‘Suzhouqing,’ a common variety. The levels of endogenous indole-3-acetic acid (IAA), zeatin riboside and active gibberellins in the shoot meristem tissues of the two cultivars were quantified by enzyme-linked immunosorbent assay during the vegetative growth stage. High levels of IAA maintained axillary bud dormancy and repressed axillary bud outgrowth allowing shoot branching to form in the vegetative stage in ‘Suzhouqing.’ In contrast, low levels of IAA did not inhibit axillary buds in ‘Maertou,’ while a high level of cytokinin promoted axillary bud growth and branch shoot development. Exogenous hormone (rac-GR24 and 6-benzylaminopurine) treatment showed that ‘Maertou’ was relatively sensitive to cytokinin, because the fold changes of cytokinin-responsive genes in ‘Maertou’ were significantly more frequent than those in ‘Suzhouqing’. Cytokinin was the direct regulator for axillary bud growth of ‘Maertou’. Compared with ‘Suzhouqing’, ‘Maertou’ was sensitive to cytokinin and this weakened the strigolactone–cytokinin branching pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Plant Biology Springer Journals

Effects of endogenous hormones on variation of shoot branching in a variety of non-heading Chinese cabbage and related gene expression

Loading next page...
 
/lp/springer_journal/effects-of-endogenous-hormones-on-variation-of-shoot-branching-in-a-X3GpTFZ4QU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Korean Society of Plant Biologists and Springer-Verlag GmbH Germany
Subject
Life Sciences; Plant Sciences; Plant Breeding/Biotechnology; Plant Genetics and Genomics; Plant Systematics/Taxonomy/Biogeography; Plant Ecology
ISSN
1226-9239
eISSN
1867-0725
D.O.I.
10.1007/s12374-016-0124-2
Publisher site
See Article on Publisher Site

Abstract

Shoot branching (tillering) primarily determines plant shoot architecture and has been studied in many plants. Shoot branching is an important trait in non-heading Chinese cabbage (Brassica rapa ssp. chinensis Makino). The B. rapa ssp. chinensis var. multiceps exhibits unique and multiple shoot branching characteristics. Here, we analyzed the variation in shoot branching between ‘Maertou,’ with multiple shoot branching, and ‘Suzhouqing,’ a common variety. The levels of endogenous indole-3-acetic acid (IAA), zeatin riboside and active gibberellins in the shoot meristem tissues of the two cultivars were quantified by enzyme-linked immunosorbent assay during the vegetative growth stage. High levels of IAA maintained axillary bud dormancy and repressed axillary bud outgrowth allowing shoot branching to form in the vegetative stage in ‘Suzhouqing.’ In contrast, low levels of IAA did not inhibit axillary buds in ‘Maertou,’ while a high level of cytokinin promoted axillary bud growth and branch shoot development. Exogenous hormone (rac-GR24 and 6-benzylaminopurine) treatment showed that ‘Maertou’ was relatively sensitive to cytokinin, because the fold changes of cytokinin-responsive genes in ‘Maertou’ were significantly more frequent than those in ‘Suzhouqing’. Cytokinin was the direct regulator for axillary bud growth of ‘Maertou’. Compared with ‘Suzhouqing’, ‘Maertou’ was sensitive to cytokinin and this weakened the strigolactone–cytokinin branching pathway.

Journal

Journal of Plant BiologySpringer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off