Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu, China

Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu,... Cyanobacteria usually appear in colonies on the surface of lakes, but the microenvironment inside colonies is not as easily detected. An accurate analysis of microenvironment properties within the colonies is key to a better understanding of the formation mechanism of cyanobacterial blooms. To understand the influence of irradiance and pH on the characteristics of cyanobacterial colonies from Lake Taihu, dissolved oxygen (DO) and pH microelectrodes were used to investigate physiological responses within these colonies and in the motionless water blooms at different irradiances and initial pH levels. The results showed that DO and pH increase with increasing irradiance, causing a dynamic alkaline environment to form inside these colonies. The maximum pH varies from 9 to 9.5 at all initial pH readings and the highest DO was achieved in the colonies incubated at an initial pH of 9. The maximum net photosynthesis (P n) and dark respiratory rate (R dark) were achieved in the colonies incubated at an initial pH of 8 and 6, respectively. The maximum pH differences were lower in colonies incubated at an initial pH of 10 compared with those incubated at a pH of 6 to 9. Photosynthesis of the colonies raised the aqueous pH to about 10.5, which is similar to the value found inside the colonies. In the motionless water bloom layer, the maximum pH varies from 10 to 10.5 at all initial pH levels and both the highest DO and pH values were achieved at an initial pH of 10. Cyanobacterial photosynthesis first created an alkaline microenvironment in the colonies and then increased the aqueous pH. This elevated aqueous pH promotes photosynthesis of the colonies and further increases the aqueous pH until it is higher than 10. Abundant oxygen bubbles attached at the colonies surface provide extra buoyancy for the colonies. An anaerobic environment forms at 3 to 4 cm depth under the bloom surface, aggravating the outbreak of cyanobacterial bloom. All these physiological characters of microenvironment in cyanobacterial colonies and water blooms favor cyanobacteria as the dominant water bloom species in eutrophic water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu, China

Loading next page...
 
/lp/springer_journal/effects-of-different-initial-ph-and-irradiance-levels-on-ymPP0B8uFC
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-018-1394-5
Publisher site
See Article on Publisher Site

Abstract

Cyanobacteria usually appear in colonies on the surface of lakes, but the microenvironment inside colonies is not as easily detected. An accurate analysis of microenvironment properties within the colonies is key to a better understanding of the formation mechanism of cyanobacterial blooms. To understand the influence of irradiance and pH on the characteristics of cyanobacterial colonies from Lake Taihu, dissolved oxygen (DO) and pH microelectrodes were used to investigate physiological responses within these colonies and in the motionless water blooms at different irradiances and initial pH levels. The results showed that DO and pH increase with increasing irradiance, causing a dynamic alkaline environment to form inside these colonies. The maximum pH varies from 9 to 9.5 at all initial pH readings and the highest DO was achieved in the colonies incubated at an initial pH of 9. The maximum net photosynthesis (P n) and dark respiratory rate (R dark) were achieved in the colonies incubated at an initial pH of 8 and 6, respectively. The maximum pH differences were lower in colonies incubated at an initial pH of 10 compared with those incubated at a pH of 6 to 9. Photosynthesis of the colonies raised the aqueous pH to about 10.5, which is similar to the value found inside the colonies. In the motionless water bloom layer, the maximum pH varies from 10 to 10.5 at all initial pH levels and both the highest DO and pH values were achieved at an initial pH of 10. Cyanobacterial photosynthesis first created an alkaline microenvironment in the colonies and then increased the aqueous pH. This elevated aqueous pH promotes photosynthesis of the colonies and further increases the aqueous pH until it is higher than 10. Abundant oxygen bubbles attached at the colonies surface provide extra buoyancy for the colonies. An anaerobic environment forms at 3 to 4 cm depth under the bloom surface, aggravating the outbreak of cyanobacterial bloom. All these physiological characters of microenvironment in cyanobacterial colonies and water blooms favor cyanobacteria as the dominant water bloom species in eutrophic water.

Journal

Journal of Applied PhycologySpringer Journals

Published: Apr 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off