Effects of different concentrations and exposure time of sodium hypochlorite on the structural, compositional and mechanical properties of human dentin

Effects of different concentrations and exposure time of sodium hypochlorite on the structural,... This study evaluated the effects of sodium hypochlorite (NaOCl) with different concentrations and exposure time on the structural, compositional and mechanical properties of human dentin in vitro. Sixty dentin slabs were obtained from freshly extracted premolars, randomly distributed into four groups (n=15), and treated with 1%, 5%, 10% NaOCl and distilled water (control group), respectively, for a total of 60 min. Attenuated total reflection infrared (ATR-IR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) were carried out before, 10 min and 60 min after the treatment. Scanning electron microscopy (SEM) and flexural strength test were conducted as well. The results showed that dentins experienced morphological alterations in the NaOCl groups, but not in the control group. Two-way repeated-measures analysis of variance revealed that the carbonate:mineral ratio (C:M), Raman relative intensity (RRI), a-axis, c-axis length and full width at half maximum (FWHM) with the increase of time and concentration in the NaOCl groups were not significantly different from those in the control group (P>0.05). Nevertheless, the mineral:matrix ratio (M:M) increased and the flexural strength declined with the increase of concentration and the extension of time in the NaOCl groups (P<0.05). Additionally, it was found that the M:M and the flexural strength remained unchanged after 1% NaOCl treatment (P>0.05), and the morphology changes were unnoticeable within 10 min in 1% NaOCl group. These results indicated that NaOCl has no significant effects on the inorganic mineral of human dentin; but it undermines and eliminates the organic content concentration- and time-dependently, which in turn influences the flexural strength and toughness of dentins. In addition, an irrigation of 1% NaOCl within 10 min can minimize the effects of NaOCl on the structural and mechanical properties of dentin during root canal treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Huazhong University of Science and Technology [Medical Sciences] Springer Journals

Effects of different concentrations and exposure time of sodium hypochlorite on the structural, compositional and mechanical properties of human dentin

Loading next page...
 
/lp/springer_journal/effects-of-different-concentrations-and-exposure-time-of-sodium-hxvhhFwt6Y
Publisher
Huazhong University of Science and Technology
Copyright
Copyright © 2017 by Huazhong University of Science and Technology and Springer-Verlag GmbH Germany
Subject
Medicine & Public Health; Medicine/Public Health, general
ISSN
1672-0733
eISSN
1993-1352
D.O.I.
10.1007/s11596-017-1774-0
Publisher site
See Article on Publisher Site

Abstract

This study evaluated the effects of sodium hypochlorite (NaOCl) with different concentrations and exposure time on the structural, compositional and mechanical properties of human dentin in vitro. Sixty dentin slabs were obtained from freshly extracted premolars, randomly distributed into four groups (n=15), and treated with 1%, 5%, 10% NaOCl and distilled water (control group), respectively, for a total of 60 min. Attenuated total reflection infrared (ATR-IR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) were carried out before, 10 min and 60 min after the treatment. Scanning electron microscopy (SEM) and flexural strength test were conducted as well. The results showed that dentins experienced morphological alterations in the NaOCl groups, but not in the control group. Two-way repeated-measures analysis of variance revealed that the carbonate:mineral ratio (C:M), Raman relative intensity (RRI), a-axis, c-axis length and full width at half maximum (FWHM) with the increase of time and concentration in the NaOCl groups were not significantly different from those in the control group (P>0.05). Nevertheless, the mineral:matrix ratio (M:M) increased and the flexural strength declined with the increase of concentration and the extension of time in the NaOCl groups (P<0.05). Additionally, it was found that the M:M and the flexural strength remained unchanged after 1% NaOCl treatment (P>0.05), and the morphology changes were unnoticeable within 10 min in 1% NaOCl group. These results indicated that NaOCl has no significant effects on the inorganic mineral of human dentin; but it undermines and eliminates the organic content concentration- and time-dependently, which in turn influences the flexural strength and toughness of dentins. In addition, an irrigation of 1% NaOCl within 10 min can minimize the effects of NaOCl on the structural and mechanical properties of dentin during root canal treatment.

Journal

Journal of Huazhong University of Science and Technology [Medical Sciences]Springer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off