Effects of complexing agent on earth-abundant environmentally friendly Cu2ZnSnS4 thin film solar cells prepared by sol–gel deposition

Effects of complexing agent on earth-abundant environmentally friendly Cu2ZnSnS4 thin film solar... Solution-processed Cu2ZnSnS4 (CZTS) thin film growth parameters using complexing agent triethanolamine (TEA) have been optimized. Effects of TEA on structural, morphological, optical and electrical properties of CZTS thin films were systematically investigated. X-ray diffraction and Raman spectroscopy of annealed CZTS thin films confirmed a pure kesterite structure with optimized TEA concentration. Surface morphology of CZTS films were analyzed by field emission scanning electron microscope and atomic force microscope, which revealed a smooth surface and systematic grain growth formation with varying TEA concentrations. p-Type conductivity was confirmed using Hall measurements and the effect of TEA concentration on electrical properties is investigated. X-ray photoelectron spectroscopy demonstrated absence of secondary phases and stoichiometric atomic ratios of multicationic quaternary CZTS thin film grown without sulphurization. UV–Vis spectra revealed a direct energy band gap ranging from 1.90 to 1.40 eV, which was found to depend upon the TEA concentration. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cells. The CZTS thin film was further used for the fabrication of a solar cell of structure SLG/FTO/ZnO/CZTS/Al. The best solar cell showed a short-circuit current density (J sc) of 10.78 mA/cm2, open circuit voltage (V oc) of 0.27 V, fill factor (FF) of 37% and power conversion efficiency (η) of 1.08% under air mass 1.5 (100 mW cm−2) illumination. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Effects of complexing agent on earth-abundant environmentally friendly Cu2ZnSnS4 thin film solar cells prepared by sol–gel deposition

Loading next page...
 
/lp/springer_journal/effects-of-complexing-agent-on-earth-abundant-environmentally-friendly-pywddYI8ki
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-018-1876-y
Publisher site
See Article on Publisher Site

Abstract

Solution-processed Cu2ZnSnS4 (CZTS) thin film growth parameters using complexing agent triethanolamine (TEA) have been optimized. Effects of TEA on structural, morphological, optical and electrical properties of CZTS thin films were systematically investigated. X-ray diffraction and Raman spectroscopy of annealed CZTS thin films confirmed a pure kesterite structure with optimized TEA concentration. Surface morphology of CZTS films were analyzed by field emission scanning electron microscope and atomic force microscope, which revealed a smooth surface and systematic grain growth formation with varying TEA concentrations. p-Type conductivity was confirmed using Hall measurements and the effect of TEA concentration on electrical properties is investigated. X-ray photoelectron spectroscopy demonstrated absence of secondary phases and stoichiometric atomic ratios of multicationic quaternary CZTS thin film grown without sulphurization. UV–Vis spectra revealed a direct energy band gap ranging from 1.90 to 1.40 eV, which was found to depend upon the TEA concentration. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cells. The CZTS thin film was further used for the fabrication of a solar cell of structure SLG/FTO/ZnO/CZTS/Al. The best solar cell showed a short-circuit current density (J sc) of 10.78 mA/cm2, open circuit voltage (V oc) of 0.27 V, fill factor (FF) of 37% and power conversion efficiency (η) of 1.08% under air mass 1.5 (100 mW cm−2) illumination.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off