Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test

Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks... We applied chlorophyll a fluorescence as a biomarker to assess the growth response and PSII behavior and performance of three pistachio (Pistacia vera) rootstocks to different salt levels after inoculation with arbuscular mycorrhizal fungi Glomus mosseae and compared it with non-mycorrhizal plants (control). Our results confirmed the depressing effect of salt stress on mycorrhization extent and showed that the effect of salinity on colonization rate is completely under the influence of host plant. In this experiment, mycorrhizal symbiosis could enhance plants total dry mass (TDM), electron transfer on the donor and the acceptor side of PSII, decrease the energy dissipation and increase the comprehensive photosynthesis performance under salt stress as well as under normal conditions. We found that both donor and acceptor sides of PSII are the target sides under high salinity in pistachio rootstocks. We also found that performance index is the parameter that better reflects the responses of the studied rootstocks to progressive salt stress. Bane-baqi was less affected by salinity in terms of TDM followed by Sarakhs and Abareqi. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test

Loading next page...
 
/lp/springer_journal/effects-of-arbuscular-mycorrhizal-fungi-on-photosystem-ii-activity-of-KMHccXfui2
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716010155
Publisher site
See Article on Publisher Site

Abstract

We applied chlorophyll a fluorescence as a biomarker to assess the growth response and PSII behavior and performance of three pistachio (Pistacia vera) rootstocks to different salt levels after inoculation with arbuscular mycorrhizal fungi Glomus mosseae and compared it with non-mycorrhizal plants (control). Our results confirmed the depressing effect of salt stress on mycorrhization extent and showed that the effect of salinity on colonization rate is completely under the influence of host plant. In this experiment, mycorrhizal symbiosis could enhance plants total dry mass (TDM), electron transfer on the donor and the acceptor side of PSII, decrease the energy dissipation and increase the comprehensive photosynthesis performance under salt stress as well as under normal conditions. We found that both donor and acceptor sides of PSII are the target sides under high salinity in pistachio rootstocks. We also found that performance index is the parameter that better reflects the responses of the studied rootstocks to progressive salt stress. Bane-baqi was less affected by salinity in terms of TDM followed by Sarakhs and Abareqi.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off