Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test

Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks... We applied chlorophyll a fluorescence as a biomarker to assess the growth response and PSII behavior and performance of three pistachio (Pistacia vera) rootstocks to different salt levels after inoculation with arbuscular mycorrhizal fungi Glomus mosseae and compared it with non-mycorrhizal plants (control). Our results confirmed the depressing effect of salt stress on mycorrhization extent and showed that the effect of salinity on colonization rate is completely under the influence of host plant. In this experiment, mycorrhizal symbiosis could enhance plants total dry mass (TDM), electron transfer on the donor and the acceptor side of PSII, decrease the energy dissipation and increase the comprehensive photosynthesis performance under salt stress as well as under normal conditions. We found that both donor and acceptor sides of PSII are the target sides under high salinity in pistachio rootstocks. We also found that performance index is the parameter that better reflects the responses of the studied rootstocks to progressive salt stress. Bane-baqi was less affected by salinity in terms of TDM followed by Sarakhs and Abareqi. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test

Loading next page...
 
/lp/springer_journal/effects-of-arbuscular-mycorrhizal-fungi-on-photosystem-ii-activity-of-KMHccXfui2
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716010155
Publisher site
See Article on Publisher Site

Abstract

We applied chlorophyll a fluorescence as a biomarker to assess the growth response and PSII behavior and performance of three pistachio (Pistacia vera) rootstocks to different salt levels after inoculation with arbuscular mycorrhizal fungi Glomus mosseae and compared it with non-mycorrhizal plants (control). Our results confirmed the depressing effect of salt stress on mycorrhization extent and showed that the effect of salinity on colonization rate is completely under the influence of host plant. In this experiment, mycorrhizal symbiosis could enhance plants total dry mass (TDM), electron transfer on the donor and the acceptor side of PSII, decrease the energy dissipation and increase the comprehensive photosynthesis performance under salt stress as well as under normal conditions. We found that both donor and acceptor sides of PSII are the target sides under high salinity in pistachio rootstocks. We also found that performance index is the parameter that better reflects the responses of the studied rootstocks to progressive salt stress. Bane-baqi was less affected by salinity in terms of TDM followed by Sarakhs and Abareqi.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off