Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development⋆

Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on... Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase (PDH) complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. This report describes the cloning of a pyruvate dehydrogenase kinase cDNA (AtPDHK) from Arabidopsis thaliana and focuses on the effects of antisense down-regulation of its expression on plant growth and development. The deduced amino acid sequence of AtPDHK exhibits extensive similarity to other plant and mammalian PDHKs, containing conserved domains typical of two-component histidine protein kinases. The Escherichia coli expressed AtPDHK specifically phosphorylated mammalian PDH E1 in a time-dependent manner. Antisense expression of the AtPDHK cDNA led to marked elevation of mtPDC activity in transgenic plants with increases ranging from 137% to 330% compared to control plants. Immunoblot analyses performed with a monoclonal antibody to the E1α mtPDH component (the subunit phosphorylated by PDHK) indicated that the increased mtPDC activity was not the result of an increase in the level of PDH protein. MtPDC from transgenic plants showed a reduced sensitivity to ATP-dependent inactivation compared to that observed in wild-type plants. Collectively, these data suggest that the antisense partial silencing of the negative regulator, PDHK, was responsible for the increased mtPDC activity observed in the antisense PDHK plants. Transgenic plants with partially repressed AtPDHK also displayed altered vegetative growth with reduced accumulation of vegetative tissues, early flower development and shorter generation time. The potential role for AtPDHK gene manipulation in crop improvement is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development⋆

Loading next page...
 
/lp/springer_journal/effects-of-antisense-repression-of-an-arabidopsis-thaliana-pyruvate-qkdjN543tn
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006393726018
Publisher site
See Article on Publisher Site

Abstract

Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase (PDH) complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. This report describes the cloning of a pyruvate dehydrogenase kinase cDNA (AtPDHK) from Arabidopsis thaliana and focuses on the effects of antisense down-regulation of its expression on plant growth and development. The deduced amino acid sequence of AtPDHK exhibits extensive similarity to other plant and mammalian PDHKs, containing conserved domains typical of two-component histidine protein kinases. The Escherichia coli expressed AtPDHK specifically phosphorylated mammalian PDH E1 in a time-dependent manner. Antisense expression of the AtPDHK cDNA led to marked elevation of mtPDC activity in transgenic plants with increases ranging from 137% to 330% compared to control plants. Immunoblot analyses performed with a monoclonal antibody to the E1α mtPDH component (the subunit phosphorylated by PDHK) indicated that the increased mtPDC activity was not the result of an increase in the level of PDH protein. MtPDC from transgenic plants showed a reduced sensitivity to ATP-dependent inactivation compared to that observed in wild-type plants. Collectively, these data suggest that the antisense partial silencing of the negative regulator, PDHK, was responsible for the increased mtPDC activity observed in the antisense PDHK plants. Transgenic plants with partially repressed AtPDHK also displayed altered vegetative growth with reduced accumulation of vegetative tissues, early flower development and shorter generation time. The potential role for AtPDHK gene manipulation in crop improvement is discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off