Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow

Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow An inclined rod is installed upstream of a circular cylinder mounted on a flat plate to mitigate the horseshoe vortices in the junction flow. Smoke-wire visualization, hot-wire velocity measurement and surface pressure measurement are employed to study the effects of the inclined rod on the laminar and turbulent junction flows. The results show a properly placed inclined rod can significantly weaken the horseshoe vortices in front of the cylinder, depress the unsteady oscillation of the vortex system, change the separation position on the flat plate and narrow the wake of the cylinder. The inclined rod method provides a promising way to suppress the horseshoe vortices in the junction flow because of its effectiveness and its easiness to implement and adjust to fit different flow conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow

Loading next page...
 
/lp/springer_journal/effects-of-an-upstream-inclined-rod-on-the-circular-cylinder-flat-yLtlmVkF0D
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0619-4
Publisher site
See Article on Publisher Site

Abstract

An inclined rod is installed upstream of a circular cylinder mounted on a flat plate to mitigate the horseshoe vortices in the junction flow. Smoke-wire visualization, hot-wire velocity measurement and surface pressure measurement are employed to study the effects of the inclined rod on the laminar and turbulent junction flows. The results show a properly placed inclined rod can significantly weaken the horseshoe vortices in front of the cylinder, depress the unsteady oscillation of the vortex system, change the separation position on the flat plate and narrow the wake of the cylinder. The inclined rod method provides a promising way to suppress the horseshoe vortices in the junction flow because of its effectiveness and its easiness to implement and adjust to fit different flow conditions.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 6, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off